10 research outputs found
Broadband Parametric Amplification in DARTWARS
Superconducting parametric amplifiers offer the capability to amplify feeble signals with extremely low levels of added noise, potentially reaching quantum-limited amplification. This characteristic makes them essential components in the realm of high-fidelity quantum computing and serves to propel advancements in the field of quantum sensing. In particular, Traveling-Wave Parametric Amplifiers (TWPAs) may be especially suitable for practical applications due to their multi-Gigahertz amplification bandwidth, a feature lacking in Josephson Parametric Amplifiers (JPAs), despite the latter being a more established technology. This paper presents recent developments of the DARTWARS (Detector Array Readout with Traveling Wave AmplifieRS) project, focusing on the latest prototypes of Kinetic Inductance TWPAs (KITWPAs). The project aims to develop a KITWPA capable of achieving 20 dB of amplification. To enhance the production yield, the first prototypes were fabricated with half the length and expected gain of the final device. In this paper, we present the results of the characterization of one of the half-length prototypes. The measurements revealed an average amplification of approximately 9 dB across a 2 GHz bandwidth for a KITWPA spanning 17 mm in length
Nonlinear Behavior of Josephson Traveling Wave Parametric Amplifiers
Recent advancements in quantum technologies and advanced detection experiments have underscored the pressing need for the detection of exceedingly weak signals within the microwave frequency spectrum. Addressing this challenge, the Josephson Traveling Wave Parametric Amplifier (JTWPA) has been proposed as a cryogenic front-end amplifier capable of approaching the quantum noise limit while providing a relevant bandwidth. This research is centered on a comprehensive numerical investigation of the JTWPA, without resorting to simplifications regarding the nonlinearity of the essential components. Specifically, this study focuses on a thorough examination of the system, characterized by coupled nonlinear differential equations representing all components of the device. Proper input and output signals at the device's boundaries are considered. The analysis of the output signals undergoing the parametric amplification process involves a detailed exploration of phase-space dynamics and Fourier spectral analysis of the output voltage. This study is conducted while considering the parameters ruling the response of the device under pump and signal excitations. In addition to the expected signal amplification, the findings reveal that the nonlinear nature of the system can give rise to unforeseen phenomena, depending on the system's operational conditions, which include: the generation of pump tone harmonics, modulation of the signal gain, and incommensurate frequency generation effects that are not easily accommodated by simplistic linearized approaches
Analysis of Josephson Junction Lifetimes for the Detection of Single Photons in a Thermal Noise Background
This work deals with the numerical analysis of the zero-voltage state lifetimes distribution of an underdamped Josephson junction used for the detection of single microwave photons in the presence of thermal noise. The analysis considers the switching probabilities of a JJ subjected to a train of current pulses, which simulates a weak photon field. To characterize the detection, we take advantage of a statistic tool, the Kumar-Carroll (KC) index, which is a good proxy of the signal-to-noise-ratio. It can be, therefore, exploited to identify the proper device fabrication parameters and the optimal operation point of the junction
Analysis of Thermal and Quantum Escape Times of Josephson Junctions for Signal Detection
In this work we investigate the limits to the possibility to reveal the existence of weak microwave signals through Josephson junctions. Even if the Josephson element is capable to reveal the electromagnetic field, thermal noise is to be quantified by means of signal theory, as a confounding factor that limits the detection. We show how the decision problem can be embedded in the frame of signal detection. As a consequence, the optimization of the detection probability and the minimization of the false alarm probability give a guide to select the Josephson junction parameters that best suit the purpose
Josephson-Based Scheme for the Detection of Microwave Photons
We propose a scheme for the detection of microwave-induced photons through a current-biased Josephson junction, from the point of view of the statistical decision theory. Our analysis is based on the numerical study of the zero-voltage lifetime distribution in response to a periodic train of pulses, that mimics the absorption of photons. The statistical properties of the detection are retrieved comparing the thermally induced transitions with the distribution of the switchings to the finite voltage state due to the joint action of thermal noise and of the incident pulses. The capability to discriminate the photon arrival can be quantified through the Kumar-Caroll index, which is a good indicator of the signal-to-noise ratio. The index can be exploited to identify the system parameters best suited for the detection of weak microwave photons
Analysis of Josephson junctions switching time distributions for the detection of single microwave photons
We investigate an optimal scheme for the detection of single microwave photons by a Josephson junction through the analysis of its switching times distribution. The proposed analysis is of support for the decision about the existence of the photon field, which is important in the case of rare events. We assume that the cavity and the transmission line are ideal (each photon absorbed to the cavity gives a current pulse as the output of the transmission line) and the photon source is periodic. The employed methodology consists in comparing the switching probabilities of a Josephson junction exposed to a train of current pulses, simulating a weak photon field, with that of the same device in absence of pulses. In both cases, thermal noise can induce thermal activated switchings. The investigation of the unbalance in the number of switching events in the two cases, gives an estimate of the efficiency of the detection. Furthermore, in the assumption of escapes described by Kramers model, it is possible to provide a relationship between the properties of the photons field, the quantum efficiency of the detection process, and the Josephson junctions switching features at finite temperatures
Theoretical and Numerical Estimate of Signal-to-Noise Ratio in the Analysis of Josephson Junctions Lifetime for Photon Detection
The performances of a Josephson junction employed to reveal a train of pulses (a rough model for single photon detection) are analyzed with a theoretical estimate that exploits an index employed in statistical decision theory, the Kumar–Carroll index. The approximate analysis compares the numerically simulated performances of the device through the receiver operating characteristics, that offer an overview of the rate of false detection, as well as the probability to miss a signal (in this case, a pulse train). It is thus demonstrated the usefulness and the limits of the succinct Kumar–Carroll parameter. On the first side, it is proven that an increase of the parameter corresponds to an improvement of the detection. However, on the side of the limitations, the expected performances are not quite accurate, for the actual performances are systematically worse than the theoretical estimates. The results may be relevant to characterize Josephson junctions as detectors of weak signals, as those stemming from axions
Broadband Parametric Amplification in DARTWARS
Superconducting parametric amplifiers offer the capability to amplify feeble signals with extremely low levels of added noise, potentially reaching quantum-limited amplification. This characteristic makes them essential components in the realm of high-fidelity quantum computing and serves to propel advancements in the field of quantum sensing. In particular, Traveling-Wave Parametric Amplifiers (TWPAs) may be especially suitable for practical applications due to their multi-Gigahertz amplification bandwidth, a feature lacking in Josephson Parametric Amplifiers (JPAs), despite the latter being a more established technology. This paper presents recent developments of the DARTWARS (Detector Array Readout with Traveling Wave AmplifieRS) project, focusing on the latest prototypes of Kinetic Inductance TWPAs (KITWPAs). The project aims to develop a KITWPA capable of achieving 20 dB of amplification. To enhance the production yield, the first prototypes were fabricated with half the length and expected gain of the final device. In this paper, we present the results of the characterization of one of the half-length prototypes. The measurements revealed an average amplification of approximately 9 dB across a 2 GHz bandwidth for a KITWPA spanning 17 mm in length
Experimental Characterization of RF-SQUIDs Based Josephson Traveling Wave Parametric Amplifier Exploiting Resonant Phase Matching Scheme
This study presents recent advancements in Josephson Traveling Wave Parametric Amplifiers (JTWPAs) developed and tested at Istituto Nazionale di Ricerca Metrologica within the Detector Array Readout with Traveling Wave AmplifieRS project framework. Combining Josephson junctions with superconducting coplanar waveguides, JTWPAs offer advanced capabilities for quantum-limited broadband microwave amplification and the emission of non-classical microwave radiation. The work delves into the architecture, optimization, and experimental characterization of a JTWPA with a Resonant Phase-Matching mechanism, highlighting signal gains and idler conversion factors in relation to pump power and signal frequency