76 research outputs found

    A 43-Nucleotide RNACis-Acting Element Governs the Site-Specific Formation of the 3′ End of a Poxvirus Late mRNA

    Get PDF
    AbstractThe 3′ ends of late mRNAs of theatigene, encoding the major component of the A-type inclusions, are generated by endoribonucleolytic cleavage at a specific site in the primary transcript [Antczaket al.,(1992),Proc. Natl. Acad. Sci. USA89, 12033–12037]. In this study, sequence analysis of cDNAs of the 3′ ends ofatimRNAs showed these mRNAs are 3′ polyadenylated at the RNA cleavage site. This suggests thatatimRNA 3′ end formation involves cleavage of a late transcript, with subsequent 3′ polyadenylation of the 5′ cleavage product. The RNAcis-acting element, the AX element, directing orientation-dependent formation of these mRNA 3′ ends, was mapped to a 345-bpAluI–XbaI fragment. Deletion analyses of this fragment showed that the boundaries of the AX element are within −5 and +38 of the RNA cleavage site. Scanning mutagenesis showed that the AX element contains at least two subelements: subelement I, 5′-UUUAU↓CCGAUAAUUC-3′, containing the cleavage site (↓), separated from the downstream subelement II, 5′-AAUUUCGGAUUUGAAUGC-3′, by a 10-nucleotide region, whose composition may be altered without effect on RNA 3′ end formation. These features, which differ from those of other elements controlling RNA processing, suggest that the AX element is a component of a novel mechanism of RNA 3′ end formation

    Insulin pump therapy with automated insulin suspension in response to hypoglycemia: reduction in nocturnal hypoglycemia in those at greatest risk.

    Get PDF
    OBJECTIVE: To evaluate a sensor-augmented insulin pump with a low glucose suspend (LGS) feature that automatically suspends basal insulin delivery for up to 2 h in response to sensor-detected hypoglycemia. RESEARCH DESIGN AND METHODS: The LGS feature of the Paradigm Veo insulin pump (Medtronic, Inc., Northridge, CA) was tested for 3 weeks in 31 adults with type 1 diabetes. RESULTS: There were 166 episodes of LGS: 66% of daytime LGS episodes were terminated within 10 min, and 20 episodes lasted the maximum 2 h. LGS use was associated with reduced nocturnal duration ≤2.2 mmol/L in those in the highest quartile of nocturnal hypoglycemia at baseline (median 46.2 vs. 1.8 min/day, P = 0.02 [LGS-OFF vs. LGS-ON]). Median sensor glucose was 3.9 mmol/L after 2-h LGS and 8.2 mmol/L at 2 h after basal restart. CONCLUSIONS: Use of an insulin pump with LGS was associated with reduced nocturnal hypoglycemia in those at greatest risk and was well accepted by patients

    SAFEGUARDING THE HEALTH OF POTATOES IN SCOTLAND

    Get PDF
    Summary: An annual programme of testing and surveillance is undertaken by The Scottish Government in order to safeguard potato production in Scotland from quarantine and non-indigenous pests. This includes potato quarantine testing and pathogen testing of nuclear stock, specific surveillance for viroid, bacterial, nematode and insect pests, inspection of seed potatoes and varietal susceptibility testing for potato wart disease (Synchytrium endobioticum) and potato cyst nematodes (Globodera spp.)

    Spatial and habitat variation in aphid, butterfly, moth and bird phenologies over the last half century

    Get PDF
    Global warming has advanced the timing of biological events, potentially leading to disruption across trophic levels. The potential importance of phenological change as a driver of population trends has been suggested. To fully understand the possible impacts, there is a need to quantify the scale of these changes spatially and according to habitat type. We studied the relationship between phenological trends, space and habitat type between 1965 and 2012 using an extensive UK dataset comprising 269 aphid, bird, butterfly and moth species. We modelled phenologies using generalized additive mixed models that included covariates for geographical (latitude, longitude, altitude), temporal (year, season) and habitat terms (woodland, scrub, grassland). Model selection showed that a baseline model with geographical and temporal components explained the variation in phenologies better than either a model in which space and time interacted or a habitat model without spatial terms. This baseline model showed strongly that phenologies shifted progressively earlier over time, that increasing altitude produced later phenologies and that a strong spatial component determined phenological timings, particularly latitude. The seasonal timing of a phenological event, in terms of whether it fell in the first or second half of the year, did not result in substantially different trends for butterflies. For moths, early season phenologies advanced more rapidly than those recorded later. Whilst temporal trends across all habitats resulted in earlier phenologies over time, agricultural habitats produced significantly later phenologies than most other habitats studied, probably because of nonclimatic drivers. A model with a significant habitat‐time interaction was the best‐fitting model for birds, moths and butterflies, emphasizing that the rates of phenological advance also differ among habitats for these groups. Our results suggest the presence of strong spatial gradients in mean seasonal timing and nonlinear trends towards earlier seasonal timing that varies in form and rate among habitat types

    In silico identification of two peptides with antibacterial activity against multidrug-resistant Staphylococcus aureus

    Get PDF
    Here we report two antimicrobial peptides (AMPs), HG2 and HG4 identified from a rumen microbiome metagenomic dataset, with activity against multidrug-resistant (MDR) bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA) strains, a major hospital and community-acquired pathogen. We employed the classifier model design to analyse, visualise, and interpret AMP activities. This approach allowed in silico discrimination of promising lead AMP candidates for experimental evaluation. The lead AMPs, HG2 and HG4, are fast-acting and show anti-biofilm and anti-inflammatory activities in vitro and demonstrated little toxicity to human primary cell lines. The peptides were effective in vivo within a Galleria mellonella model of MRSA USA300 infection. In terms of mechanism of action, HG2 and HG4 appear to interact with the cytoplasmic membrane of target cells and may inhibit other cellular processes, whilst preferentially binding to bacterial lipids over human cell lipids. Therefore, these AMPs may offer additional therapeutic templates for MDR bacterial infections

    In silico identification of two peptides with antibacterial activity against multidrug-resistant Staphylococcus aureus

    Get PDF
    Here we report two antimicrobial peptides (AMPs), HG2 and HG4 identified from a rumen microbiome metagenomic dataset, with activity against multidrug-resistant (MDR) bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA) strains, a major hospital and community-acquired pathogen. We employed the classifier model design to analyse, visualise, and interpret AMP activities. This approach allowed in silico discrimination of promising lead AMP candidates for experimental evaluation. The lead AMPs, HG2 and HG4, are fast-acting and show anti-biofilm and anti-inflammatory activities in vitro and demonstrated little toxicity to human primary cell lines. The peptides were effective in vivo within a Galleria mellonella model of MRSA USA300 infection. In terms of mechanism of action, HG2 and HG4 appear to interact with the cytoplasmic membrane of target cells and may inhibit other cellular processes, whilst preferentially binding to bacterial lipids over human cell lipids. Therefore, these AMPs may offer additional therapeutic templates for MDR bacterial infections

    In silico identification of novel peptides with antibacterial activity against multidrug resistant Staphylococcus aureus

    Get PDF
    Herein we report the identification and characterisation of two linear antimicrobial peptides (AMPs), HG2 and HG4, with activity against a wide range of multidrug resistant (MDR) bacteria, especially methicillin resistant Staphylococcus aureus (MRSA) strains, a highly problematic group of Gram-positive bacteria in the hospital and community environment. To identify the novel AMPs presented here, we employed the classifier model design, a feature extraction method using molecular descriptors for amino acids for the analysis, visualization, and interpretation of AMP activities from a rumen metagenomic dataset. This allowed for the in silico discrimination of active and inactive peptides in order to define a small number of promising novel lead AMP test candidates for chemical synthesis and experimental evaluation. In vitro data suggest that the chosen AMPs are fast acting, show strong biofilm inhibition and dispersal activity and are efficacious in an in vivo model of MRSA USA300 infection, whilst showing little toxicity to human erythrocytes and human primary cell lines ex vivo. Observations from biophysical AMP-lipid-interactions and electron microscopy suggest that the newly identified peptides interact with the cell membrane and may be involved in the inhibition of other cellular processes. Amphiphilic conformations associated with membrane disruption are also observed in 3D molecular modelling of the peptides. HG2 and HG4 both preferentially bind to MRSA total lipids rather than with human cell lipids indicating that HG4 may form superior templates for safer therapeutic candidates for MDR bacterial infections

    What Triggers Oxygen Loss in Oxygen Redox Cathode Materials?

    Get PDF
    It is possible to increase the charge capacity of transition-metal (TM) oxide cathodes in alkali-ion batteries by invoking redox reactions on the oxygen. However, oxygen loss often occurs. To explore what affects oxygen loss in oxygen redox materials, we have compared two analogous Na-ion cathodes, P2-Na0.67Mg0.28Mn0.72O2 and P2-Na0.78Li0.25Mn0.75O2. On charging to 4.5 V, >0.4e– are removed from the oxide ions of these materials, but neither compound exhibits oxygen loss. Li is retained in P2-Na0.78Li0.25Mn0.75O2 but displaced from the TM to the alkali metal layers, showing that vacancies in the TM layers, which also occur in other oxygen redox compounds that exhibit oxygen loss such as Li[Li0.2Ni0.2Mn0.6]O2, are not a trigger for oxygen loss. On charging at 5 V, P2-Na0.78Li0.25Mn0.75O2 exhibits oxygen loss, whereas P2-Na0.67Mg0.28Mn0.72O2 does not. Under these conditions, both Na+ and Li+ are removed from P2-Na0.78Li0.25Mn0.75O2, resulting in underbonded oxygen (fewer than 3 cations coordinating oxygen) and surface-localized O loss. In contrast, for P2-Na0.67Mg0.28Mn0.72O2, oxygen remains coordinated by at least 2 Mn4+ and 1 Mg2+ ions, stabilizing the oxygen and avoiding oxygen loss

    CD14 Deficiency Impacts Glucose Homeostasis in Mice through Altered Adrenal Tone

    Get PDF
    The toll-like receptors comprise one of the most conserved components of the innate immune system, signaling the presence of molecules of microbial origin. It has been proposed that signaling through TLR4, which requires CD14 to recognize bacterial lipopolysaccharide (LPS), may generate low-grade inflammation and thereby affect insulin sensitivity and glucose metabolism. To examine the long-term influence of partial innate immune signaling disruption on glucose homeostasis, we analyzed knockout mice deficient in CD14 backcrossed into the diabetes-prone C57BL6 background at 6 or 12 months of age. CD14-ko mice, fed either normal or high-fat diets, displayed significant glucose intolerance compared to wild type controls. They also displayed elevated norepinephrine urinary excretion and increased adrenal medullary volume, as well as an enhanced norepinephrine secretory response to insulin-induced hypoglycemia. These results point out a previously unappreciated crosstalk between innate immune- and sympathoadrenal- systems, which exerts a major long-term effect on glucose homeostasis

    Exploring the Zoonotic Potential of Mycobacterium avium Subspecies paratuberculosis through Comparative Genomics

    Get PDF
    A comparative genomics approach was utilised to compare the genomes of Mycobacterium avium subspecies paratuberculosis (MAP) isolated from early onset paediatric Crohn's disease (CD) patients as well as Johne's diseased animals. Draft genome sequences were produced for MAP isolates derived from four CD patients, one ulcerative colitis (UC) patient, and two non-inflammatory bowel disease (IBD) control individuals using Illumina sequencing, complemented by comparative genome hybridisation (CGH). MAP isolates derived from two bovine and one ovine host were also subjected to whole genome sequencing and CGH. All seven human derived MAP isolates were highly genetically similar and clustered together with one bovine type isolate following phylogenetic analysis. Three other sequenced isolates (including the reference bovine derived isolate K10) were genetically distinct. The human isolates contained two large tandem duplications, the organisations of which were confirmed by PCR. Designated vGI-17 and vGI-18 these duplications spanned 63 and 109 open reading frames, respectively. PCR screening of over 30 additional MAP isolates (3 human derived, 27 animal derived and one environmental isolate) confirmed that vGI-17 and vGI-18 are common across many isolates. Quantitative real-time PCR of vGI-17 demonstrated that the proportion of cells containing the vGI-17 duplication varied between 0.01 to 15% amongst isolates with human isolates containing a higher proportion of vGI-17 compared to most animal isolates. These findings suggest these duplications are transient genomic rearrangements. We hypothesise that the over-representation of vGI-17 in human derived MAP strains may enhance their ability to infect or persist within a human host by increasing genome redundancy and conferring crude regulation of protein expression across biologically important regions
    corecore