189 research outputs found

    Roadblocks to translational challenges on viral pathogenesis.

    Get PDF
    Distinct roadblocks prevent translating basic findings in viral pathogenesis into therapies and implementing potential solutions in the clinic. An ongoing partnership between the Volkswagen Foundation and Nature Medicine resulted in an interactive meeting in 2012, as part of the "Herrenhausen Symposia" series. Current challenges for various fields of viral research were recognized and discussed with a goal in mind--to identify solutions and propose an agenda to address the translational barriers. Here, some of the researchers who participated at the meeting provide a concise outlook at the most pressing unmet research and clinical needs, identifying these key obstacles is a necessary step towards the prevention and cure of human viral diseases

    Bridging the Gaps between Fundamental, Preclinical and Clinical Research: Report from a Global HIV Vaccine Enterprise Working Group

    Get PDF
    The Global HIV Vaccine Enterprise (the Enterprise) convened a two-day workshop on 17-18 September 2009, at the Enterprise offices in New York; to discuss approaches to bridging the gaps between fundamental,preclinical and clinical HIV vaccine research. The topic of this Working Group originated from discussions of the Enterprise Science Committee,which proposed that more effective collaboration between these three areas of HIV vaccine research is needed in order to accelerate the pace of scientific progress in the field. Because the meeting took place before the release of the RV144 trial results held in Thailand, the conclusions reached during the meeting were further discussed during consultations at scientific conferences and at a joint meeting of the Science Committee and Chairs of all five Working Groups. Thus, this Report reflects both the original discussions of the Working Group and subsequent discussions that took place after the release of the RV144 trial results

    In situ detection of Gag-specific CD8+ cells in the GI tract of SIV infected Rhesus macaques

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SIV and HIV predominantly replicate in lymphoid tissue, but the study of virus specific CD8<sup>+ </sup>T cells in intact lymphoid tissue is difficult, as traditional <it>in situ </it>tetramer staining requires fresh tissue.</p> <p>Results</p> <p>In this report, we demonstrate a novel technique using Qdot 655-conjugated peptide-MHC multimers to directly visualize SIV specific cells in cryopreserved tissue biopsies from chronically SIVmac239 infected Rhesus macaques. Qdot 655 multimers showed similar sensitivity and specificity to APC-conjugated tetramers by flow cytometry analysis, but yielded ten-fold higher signal intensity when imaged by fluorescence microscopy. Using this technique, we detected CD8<sup>+ </sup>T cells which recognize an immunodominant epitope (Gag CM9) in the spleen, lymph nodes, ileum and colon. In all these tissues, the Gag CM9 positive cells were mainly located in the extra follicular T cell zone. In the ileum and colon, we found Gag CM9 positive cells concentrated in Peyer's patches and solitary lymphoid follicles, a pattern of localization not previously described.</p> <p>Conclusions</p> <p>The use of Qdot multimers provide an anatomic and quantitative evaluation of SIV specific CD8<sup>+ </sup>T cell responses in SIV pathogenesis, and may prove useful to studies of SIV specific CD8<sup>+ </sup>T cell responses elicited by vaccines and other immunotherapies in the non-human primate model.</p

    A new perspective of the structural complexity of HCMV-specific T-cell responses

    Get PDF
    Background: In studies exploring the effects of HCMV infection on immune system aging (‘immunosenescence’), after organ transplantation or in other settings, HCMV-specific T-cell responses are often assessed with respect to purportedly ‘immunodominant’ protein subunits. However, the response structure in terms of recognized antigens and response hierarchies (architecture) is not well understood and actual correlates of immune protection are not known. Methods: We explored the distribution of T-cell response sizes and dominance hierarchies as well as response breadth in 33 HCMV responders with respect to >200 HCMV proteins. Results: At the individual responder level HCMV-specific T-cell responses were generally arranged in clear dominance hierarchies; interestingly, the number of proteins recognized by an individual correlated closely with the size of their biggest response. Target-specificity varied considerably between donors and across hierarchy levels with the presence, size, and hierarchy position of responses to purportedly ‘immunodominant’ targets being unpredictable. Conclusions: Predicting protective immunity based on isolated HCMV subunit-specific T-cell responses is questionable in light of the complex architecture of the overall response. Our findings have important implications for T-cell monitoring, intervention strategies, as well as the application of animal models to the understanding of human infection

    Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects

    Get PDF
    Human cytomegalovirus (HCMV) infections of immunocompetent hosts are characterized by a dynamic, life-long interaction in which host immune responses, particularly of T cells, restrain viral replication and prevent disease but do not eliminate the virus or preclude transmission. Because HCMV is among the largest and most complex of known viruses, the T cell resources committed to maintaining this balance have never been characterized completely. Here, using cytokine flow cytometry and 13,687 overlapping 15mer peptides comprising 213 HCMV open reading frames (ORFs), we found that 151 HCMV ORFs were immunogenic for CD4+ and/or CD8+ T cells, and that ORF immunogenicity was influenced only modestly by ORF expression kinetics and function. We further documented that total HCMV-specific T cell responses in seropositive subjects were enormous, comprising on average ∼10% of both the CD4+ and CD8+ memory compartments in blood, whereas cross-reactive recognition of HCMV proteins in seronegative individuals was limited to CD8+ T cells and was rare. These data provide the first glimpse of the total human T cell response to a complex infectious agent and will provide insight into the rules governing immunodominance and cross-reactivity in complex viral infections of humans

    Profound CD4+/CCR5+ T cell expansion is induced by CD8+ lymphocyte depletion but does not account for accelerated SIV pathogenesis

    Get PDF
    Depletion of CD8+ lymphocytes during acute simian immunodeficiency virus (SIV) infection of rhesus macaques (RMs) results in irreversible prolongation of peak-level viral replication and rapid disease progression, consistent with a major role for CD8+ lymphocytes in determining postacute-phase viral replication set points. However, we report that CD8+ lymphocyte depletion is also associated with a dramatic induction of proliferation among CD4+ effector memory T (TEM) cells and, to a lesser extent, transitional memory T (TTrM) cells, raising the question of whether an increased availability of optimal (activated/proliferating), CD4+/CCR5+ SIV “target” cells contributes to this accelerated pathogenesis. In keeping with this, depletion of CD8+ lymphocytes in SIV− RMs led to a sustained increase in the number of potential CD4+ SIV targets, whereas such depletion in acute SIV infection led to increased target cell consumption. However, we found that the excess CD4+ TEM cell proliferation of CD8+ lymphocyte–depleted, acutely SIV-infected RMs was completely inhibited by interleukin (IL)-15 neutralization, and that this inhibition did not abrogate the rapidly progressive infection in these RMs. Moreover, although administration of IL-15 during acute infection induced robust CD4+ TEM and TTrM cell proliferation, it did not recapitulate the viral dynamics of CD8+ lymphocyte depletion. These data suggest that CD8+ lymphocyte function has a larger impact on the outcome of acute SIV infection than the number and/or activation status of target cells available for infection and viral production

    HLA-E-restricted, Gag-specific CD8+ T cells can suppress HIV-1 infection, offering vaccine opportunities

    Get PDF
    Human leukocyte antigen-E (HLA-E) normally presents an HLA class Ia signal peptide to the NKG2A/C-CD94 regulatory receptors on natural killer (NK) cells and T cell subsets. Rhesus macaques immunized with a cytomegalovirus-vectored simian immunodeficiency virus (SIV) vaccine generated Mamu-E (HLA-E homolog)-restricted T cell responses that mediated post-challenge SIV replication arrest in >50% of animals. However, HIV-1-specific, HLA-E-restricted T cells have not been observed in HIV-1-infected individuals. Here, HLA-E-restricted, HIV-1-specific CD8 + T cells were primed in vitro. These T cell clones and allogeneic CD8 + T cells transduced with their T cell receptors suppressed HIV-1 replication in CD4 + T cells in vitro. Vaccine induction of efficacious HLA-E-restricted HIV-1-specific T cells should therefore be possible
    corecore