13 research outputs found
High-speed AFM with a light touch
No abstract available
Room Temperature Optically and Magnetically Active Edges in Phosphorene Nanoribbons
Nanoribbons - nanometer wide strips of a two-dimensional material - are a
unique system in condensed matter physics. They combine the exotic electronic
structures of low-dimensional materials with an enhanced number of exposed
edges, where phenomena including ultralong spin coherence times, quantum
confinement and topologically protected states can emerge. An exciting prospect
for this new material concept is the potential for both a tunable
semiconducting electronic structure and magnetism along the nanoribbon edge.
This combination of magnetism and semiconducting properties is the first step
in unlocking spin-based electronics such as non-volatile transistors, a route
to low-energy computing, and has thus far typically only been observed in doped
semiconductor systems and/or at low temperatures. Here, we report the magnetic
and semiconducting properties of phosphorene nanoribbons (PNRs). Static (SQUID)
and dynamic (EPR) magnetization probes demonstrate that at room temperature,
films of PNRs exhibit macroscopic magnetic properties, arising from their edge,
with internal fields of ~ 250 to 800 mT. In solution, a giant magnetic
anisotropy enables the alignment of PNRs at modest sub-1T fields. By leveraging
this alignment effect, we discover that upon photoexcitation, energy is rapidly
funneled to a dark-exciton state that is localized to the magnetic edge and
coupled to a symmetry-forbidden edge phonon mode. Our results establish PNRs as
a unique candidate system for studying the interplay of magnetism and
semiconducting ground states at room temperature and provide a stepping-stone
towards using low-dimensional nanomaterials in quantum electronics.Comment: 18 pages, 4 figure