273 research outputs found

    An Electromigration and Thermal Model of Power Wires for a Priori High-Level Reliability Prediction

    Get PDF
    In this paper, a simple power-distribution electrothermal model including the interconnect self-heating is used together with a statistical model of average and rms currents of functional blocks and a high-level model of fanout distribution and interconnect wirelength. Following the 2001 SIA roadmap projections, we are able to predict a priori that the minimum width that satisfies the electromigration constraints does not scale like the minimum metal pitch in future technology nodes. As a consequence, the percentage of chip area covered by power lines is expected to increase at the expense of wiring resources unless proper countermeasures are taken. Some possible solutions are proposed in the paper

    A Parallel Radix-Sort-Based VLSI Architecture for Finding the First W Maximum/Minimum Values

    Get PDF
    Very-large-scale integration (VLSI) architectures for finding the first W (W>2) maximum (or minimum) values are required in the implementation of several applications such as nonbinary low-density-parity-check decoders, K-best multiple-input–multiple-output (MIMO) detectors, and turbo product codes. In this brief, a parallel radix-sort-based VLSI architecture for finding the first W maximum (or minimum) values is proposed. The described architecture, called Bit-Wise-And (BWA) architecture, relies on analyzing input data from the most significant bit to the least significant one, with very simple logic circuits. One key feature in the BWA architecture is its high level of scalability, which enables the adoption of this solution in a large spectrum of applications, corresponding to large ranges for both W and the size of the input data set. Experimental results, achieved by implementing the proposed architecture on a high-speed 90-nm CMOS standard-cell technology, show that BWA architecture requires significantly less area than other solutions available in the literature, i.e., less than or about 50% in all the considered cases and about 50% in the worst case. Moreover, the BWA architecture exhibits the lowest area–delay product among almost all considered cases

    Result-Biased Distributed-Arithmetic-Based Filter Architectures for Approximately Computing the DWT

    Get PDF
    The discrete wavelet transform is a fundamental block in several schemes for image compression. Its implementation relies on filters that usually require multiplications leading to a relevant hardware complexity. Distributed arithmetic is a general and effective technique to implement multiplierless filters and has been exploited in the past to implement the discrete wavelet transform as well. This work proposes a general method to implement a discrete wavelet transform architecture based on distributed arithmetic to produce approximate results. The novelty of the proposed method relies on the use of result-biasing techniques (inspired by the ones used in fixed-width multiplier architectures), which cause a very small loss of quality of the compressed image (average loss of 0.11 dB and 0.20 dB in terms of PSNR for the 9/7 and 10/18 wavelet filters, respectively). Compared with previously proposed distributed-arithmetic-based architectures for the computation of the discrete wavelet transform, this technique saves from about 20% to 25% of hardware complexity

    Long-term home ventilation of children in Italy: A national survey.

    Get PDF
    BACKGROUND: Improved technology, as well as professional and parental awareness, enable many ventilator-dependent children to live at home. However, the profile of this growing population, the quality and adequacy of home care, and patients' needs still require thorough assessment. OBJECTIVES: To define the characteristics of Italian children receiving long-term home mechanical ventilation (HMV) in Italy. METHODS: A detailed questionnaire was sent to 302 National Health Service hospitals potentially involved in the care of HVM in children (aged <17 years). Information was collected on patient characteristics, type of ventilation, and home respiratory care. RESULTS: A total of 362 HMV children was identified. The prevalence was 4.2 per 100,000 (95% CI: 3.8-4.6), median age was 8 years (interquartile range 4-14), median age at starting mechanical ventilation was 4 years (1-11), and 56% were male. The most frequent diagnostic categories were neuromuscular disorders (49%), lung and upper respiratory tract diseases (18%), hypoxic (ischemic) encephalopathy (13%), and abnormal ventilation control (12%). Medical professionals with nurses (for 62% of children) and physiotherapists (20%) participated in the patients' discharge from hospital, though parents were the primary care giver, and in 47% of cases, the sole care giver. Invasive ventilation was used in 41% and was significantly related to young age, southern regional residence, longer time spent under mechanical ventilation, neuromuscular disorders, or hypoxic (ischemic) encephalopathy. CONCLUSIONS: Care and technical assistance of long-term HMV children need assessment, planning, and resources. A wide variability in pattern of HMV was found throughout Italy. An Italian national ventilation program, as well as a national registry, could be useful in improving the care of these often critically ill children

    Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of s√=7TeV proton-proton collisions

    Get PDF
    Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb−1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from ≥6 to ≥9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV
    corecore