18 research outputs found
Hidden Sylvatic Foci of the Main Vector of Chagas Disease Triatoma infestans: Threats to the Vector Elimination Campaign?
Triatoma infestans, a highly domesticated species and historically the main vector of Trypanosoma cruzi, is the target of an insecticide-based elimination program in the southern cone countries of South America since 1991. Only limited success has been achieved in the Gran Chaco region due to repeated reinfestations. We conducted full-coverage spraying of pyrethroid insecticides of all houses in a well-defined rural area in northwestern Argentina, followed by intense monitoring of house reinfestation and searches for triatomine bugs in sylvatic habitats during the next two years, to establish the putative sources of new bug colonies. We found low-density sylvatic foci of T. infestans in trees located within the species' flight range from the nearest infested house detected before control interventions. Using multiple methods (fine-resolution satellite imagery, geographic information systems, spatial statistics, genetic markers and wing geometric morphometry), we corroborated the species identity of the sylvatic bugs as T. infestans and found they were indistinguishable from or closely related to local domestic or peridomestic bug populations. Two sylvatic foci were spatially associated to the nearest peridomestic bug populations found before interventions. Sylvatic habitats harbor hidden foci of T. infestans that may represent a threat to vector suppression attempts
Characterization of the shsp genes in Drosophila buzzatii and association between the frequency of Valine mutations in hsp23 and climatic variables along a longitudinal gradient in Australia
The small heat shock gene (shsp) cluster of Drosophila buzzatii was sequenced and the gene order and DNA sequence were compared with those of the shsps in Drosophila melanogaster. The D. buzzatii shsp cluster contains an inversion and a duplication of hsp26. A phylogenetic tree was constructed based on hsp26 genes from several Drosophila species of the Sophophora and Drosophila subgenera. The tree shows first a separation of the Sophophora and the Drosophila subgenera and then the Drosophila subgenus is divided into the Hawaiian Drosophila and the repleta/virilis groups. Only the latter contain a duplicated hsp26. Comparing the gene organisation of the shsp cluster shows that all the Drosophila subgenus species contain the inversion. Putative heat shock elements (HSE) were found in the promoters of all the shsp and putative regulator elements for tissue specific expression were found in the promoter of hsp23, hsp27 and one of the hsp26 genes. hsp23 was found to be polymorphic for four non-synonymous changes that all lead to exchange of a Valine. The duplicated hsp26 gene in D. buzzatii (phsp26) was polymorphic for two non-synonymous changes. The allele frequencies of these variants were determined in nine D. buzzatii populations covering most of its distribution in Australia using high-resolution melting curves. The allele frequencies of one of the hsp23 variants showed a significant linear regression with longitude and the pooled frequency of the four Valine changes of hsp23 in the nine populations showed a significant linear regression with longitude and with a composite measure of climatic variables
Molecular phylogeography of the Chagas' disease vector Triatoma infestans in Argentina
Triatoma infestans is the main vector of Chagas' disease in South America between latitudes 10°S and 46°S. A multilocus microsatellite data set of 836 individuals from 27 populations of T. infestans, from all its range of distribution in Argentina, was analyzed. Our results favor the hypothesis of two independent migration events of colonization in Argentina and secondary contacts. The majority of the populations of the western provinces of Catamarca, La Rioja, San Juan and the west of Cordoba province, had almost no shared ancestry with the rest of the populations analyzed. Probably those populations, belonging to localities close to the Andean region, could have been established by the dispersal line of T. infestans that would have arrived to Argentina through the Andes, whereas most of the rest of the populations analyzed may have derived from the dispersal line of T. infestans in non-Andean lowlands. Among them, those from the provinces of Formosa, Chaco, Santiago del Estero and Santa Fe shared different percentages of ancestry and presented lower degree of genetic differentiation. The migratory movement linked to regional economies and possibly associated with passive dispersal, would allow a higher genetic exchange among these populations of T. infestans. This study, using microsatellite markers, provides a new approach for evaluating the validity of the different hypotheses concerning the evolutionary history of this species. Two major lineages of T. infestans, an Andean and non-Andean, are suggested