191 research outputs found

    Correction to: RNA Bioinformatics.

    Get PDF
    n/

    Single cell transcriptomics reveals specific RNA editing signatures in the human brain

    Get PDF
    While RNA editing by A-to-I deamination is a requisite for neuronal function in humans, it is under investigated in single cells. Here we fill this gap by analysing RNA editing profiles of single cells from the brain cortex of living human subjects. We show that RNA editing levels per cell are bimodally distributed and distinguish between major brain cell types thus providing new insights into neuronal dynamics

    REDIportal: a comprehensive database of A-to-I RNA editing events in humans

    Get PDF
    RNA editing by A-to-I deamination is the prominent co-/post-transcriptional modification in humans. It is carried out by ADAR enzymes and contributes to both transcriptomic and proteomic expansion. RNA editing has pivotal cellular effects and its deregulation has been linked to a variety of human disorders including neurological and neurodegenerative diseases and cancer. Despite its biological relevance, many physiological and functional aspects of RNA editing are yet elusive. Here, we present REDIportal, available online at http://srv00.recas.ba.infn.it/atlas/, the largest and comprehensive collection of RNA editing in humans including more than 4.5 millions of A-to-I events detected in 55 body sites from thousands of RNAseq experiments. REDIportal embeds RADAR database and represents the first editing resource designed to answer functional questions, enabling the inspection and browsing of editing levels in a variety of human samples, tissues and body sites. In contrast with previous RNA editing databases, REDIportal comprises its own browser (JBrowse) that allows users to explore A-to-I changes in their genomic context, empathizing repetitive elements in which RNA editing is prominent

    ExpEdit: a webserver to explore human RNA editing in RNA-Seq experiments.

    Get PDF
    Abstract Summary: ExpEdit is a web application for assessing RNA editing in human at known or user-specified sites supported by transcript data obtained by RNA-Seq experiments. Mapping data (in SAM/BAM format) or directly sequence reads [in FASTQ/short read archive (SRA) format] can be provided as input to carry out a comparative analysis against a large collection of known editing sites collected in DARNED database as well as other user-provided potentially edited positions. Results are shown as dynamic tables containing University of California, Santa Cruz (UCSC) links for a quick examination of the genomic context. Availability: ExpEdit is freely available on the web at http://www.caspur.it/ExpEdit/. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online

    REDIdb: the RNA editing database

    Get PDF
    The RNA Editing Database (REDIdb) is an interactive, web-based database created and designed with the aim to allocate RNA editing events such as substitutions, insertions and deletions occurring in a wide range of organisms. The database contains both fully and partially sequenced DNA molecules for which editing information is available either by experimental inspection (in vitro) or by computational detection (in silico). Each record of REDIdb is organized in a specific flat-file containing a description of the main characteristics of the entry, a feature table with the editing events and related details and a sequence zone with both the genomic sequence and the corresponding edited transcript. REDIdb is a relational database in which the browsing and identification of editing sites has been simplified by means of two facilities to either graphically display genomic or cDNA sequences or to show the corresponding alignment. In both cases, all editing sites are highlighted in colour and their relative positions are detailed by mousing over. New editing positions can be directly submitted to REDIdb after a user-specific registration to obtain authorized secure access. This first version of REDIdb database stores 9964 editing events and can be freely queried at

    Profiling RNA editing in human tissues: towards the inosinome Atlas

    Get PDF
    Adenine to Inosine RNA editing is a widespread co- and post-transcriptional mechanism mediated by ADAR enzymes acting on double stranded RNA. It has a plethora of biological effects, appears to be particularly pervasive in humans with respect to other mammals, and is implicated in a number of diverse human pathologies. Here we present the first human inosinome atlas comprising 3,041,422 A-to-I events identified in six tissues from three healthy individuals. Matched directional total-RNA-Seq and whole genome sequence datasets were generated and analysed within a dedicated computational framework, also capable of detecting hyper-edited reads. Inosinome profiles are tissue specific and edited gene sets consistently show enrichment of genes involved in neurological disorders and cancer. Overall frequency of editing also varies, but is strongly correlated with ADAR expression levels. The inosinome database is available at: http://srv00.ibbe.cnr.it/editing/

    REDIportal: millions of novel A-to-I RNA editing events from thousands of RNAseq experiments

    Get PDF
    RNA editing is a relevant epitranscriptome phenomenon able to increase the transcriptome and proteome diversity of eukaryotic organisms. ADAR mediated RNA editing is widespread in humans in which millions of A-to-I changes modify thousands of primary transcripts. RNA editing has pivotal roles in the regulation of gene expression or modulation of the innate immune response or functioning of several neurotransmitter receptors. Massive transcriptome sequencing has fostered the research in this field. Nonetheless, different aspects of the RNA editing biology are still unknown and need to be elucidated. To support the study of A-to-I RNA editing we have updated our REDIportal catalogue raising its content to about 16 millions of events detected in 9642 human RNAseq samples from the GTEx project by using a dedicated pipeline based on the HPC version of the REDItools software. REDIportal now allows searches at sample level, provides overviews of RNA editing profiles per each RNAseq experiment, implements a Gene View module to look at individual events in their genic context and hosts the CLAIRE database. Starting from this novel version, REDIportal will start collecting non-human RNA editing changes for comparative genomics investigations. The database is freely available at http://srv00.recas.ba.infn.it/atlas/index.html
    • …
    corecore