14 research outputs found

    Advances in Dynamic Light Scattering Imaging of Blood Flow

    Get PDF
    Dynamic light scattering (DLS) is a well known experimental approach uniquely suited for the characterization of small particles undergoing Brownian motion in randomly inhomogeneous turbid scattering medium, including water suspension, polymers in solutions, cells cultures, and so on. DLS is based on the illuminating of turbid medium with a coherent laser light and further analyzes the intensity fluctuations caused by the motion of the scattering particles. The DLS-based spin-off derivative techniques, such laser Doppler flowmetry (LDF), diffusing wave spectroscopy (DWS), laser speckle contrast imaging (LSCI), and Doppler optical coherence tomography (DOCT), are exploited widely for non-invasive imaging of blood flow in brain, skin, muscles, and other biological tissues. The recent advancements in the DLS-based imaging technologies in frame of their application for brain blood flow monitoring, skin perfusion measurements, and non-invasive blood micro-circulation characterization are overviewed. The fundamentals, breakthrough potential, and practical findings revealed by DLS-based blood flow imaging studies, including the limitations and challenges of the approach such as movement artifacts, non-ergodicity, and overcoming high scattering properties of studied medium, are also discussed. It is concluded that continued research and further technological advancements in DLS-based imaging will pave the way for new exciting developments and insights into blood flow diagnostic imaging

    Closest horizons of Hsp70 engagement to manage neurodegeneration

    Get PDF
    Our review seeks to elucidate the current state-of-the-art in studies of 70-kilodalton-weighed heat shock proteins (Hsp70) in neurodegenerative diseases (NDs). The family has already been shown to play a crucial role in pathological aggregation for a wide spectrum of brain pathologies. However, a slender boundary between a big body of fundamental data and its implementation has only recently been crossed. Currently, we are witnessing an anticipated advancement in the domain with dozens of studies published every month. In this review, we briefly summarize scattered results regarding the role of Hsp70 in the most common NDs including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). We also bridge translational studies and clinical trials to portray the output for medical practice. Available options to regulate Hsp70 activity in NDs are outlined, too

    Closest horizons of Hsp70 engagement to manage neurodegeneration

    Get PDF
    Our review seeks to elucidate the current state-of-the-art in studies of 70-kilodalton-weighed heat shock proteins (Hsp70) in neurodegenerative diseases (NDs). The family has already been shown to play a crucial role in pathological aggregation for a wide spectrum of brain pathologies. However, a slender boundary between a big body of fundamental data and its implementation has only recently been crossed. Currently, we are witnessing an anticipated advancement in the domain with dozens of studies published every month. In this review, we briefly summarize scattered results regarding the role of Hsp70 in the most common NDs including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). We also bridge translational studies and clinical trials to portray the output for medical practice. Available options to regulate Hsp70 activity in NDs are outlined, too

    Use of fluorescent optical fibre probe for recording parameters of brain metabolism in rat model

    Get PDF
    This studiy was carried out on groups of clinically healthy male Wistar rats. Animals received distilled drinking water ad libitum for 1 month, water containing succinic acid, water containing zinc sulphate and succinate zinc. Using the method of fluorescence spectroscopy, the parameters of brain metabolism in vivo in a model of laboratory rats was investigated. Based on data obtained by fluorescence spectroscopy, we have registered a change in the degree of cellular respiration in different structures of the cerebral cortex with the toxic effect of zinc compounds and succinic acid on the oxygen exchange process

    The number of the intraepithelial T cells correlate with the proliferation index in human bulbourethral gland epithelium

    Get PDF
    Background: Our study has immunohistochemically examined T cells localization and number as well as proliferative activity level for the bulbourethral gland epithelium in men of different ages, using monoclonal antibodies against CD45RO and proliferating cell nuclear antigen (PCNA). Results: We have found that the T cells have been localized mainly in excretory ducts epithelium of the glands in any age group, meanwhile their relative number varies with age. The excretory ducts epithelium has shown a high proliferative activity when in acini the PCNA index has been low. Postnatal dynamics of the epithelium proliferative activity positively correlates with age-related density fluctuations in lymphocytic infiltration of the glands. Conclusions: We consider that intraepithelial T cells may contribute to the regulation of epithelial cells proliferation in the bulbourethral glands

    3D Mueller matrix mapping of layered distributions of depolarisation degree for analysis of prostate adenoma and carcinoma diffuse tissues

    Get PDF
    Prostate cancer is the second most common cancer globally in men, and in some countries is now the most diagnosed form of cancer. It is necessary to differentiate between benign and malignant prostate conditions to give accurate diagnoses. We aim to demonstrate the use of a 3D Mueller matrix method to allow quick and easy clinical differentiation between prostate adenoma and carcinoma tissues with different grades and Gleason scores. Histological sections of benign and malignant prostate tumours, obtained by radical prostatectomy, were investigated. We map the degree of depolarisation in the different prostate tumour tissues using a Mueller matrix polarimeter set-up, based on the superposition of a reference laser beam with the interference pattern of the sample in the image plane. The depolarisation distributions can be directly related to the morphology of the biological tissues. The dependences of the magnitude of the 1st to 4th order statistical moments of the depolarisation distribution are determined, which characterise the distributions of the depolarisation values. To determine the diagnostic potential of the method three groups of histological sections of prostate tumour biopsies were formed. The first group contained 36 adenoma tissue samples, while the second contained 36 carcinoma tissue samples of a high grade (grade 4: poorly differentiated-4 + 4 Gleason score), and the third group contained 36 carcinoma tissue samples of a low grade (grade 1: moderately differentiated-3 + 3 Gleason score). Using the calculated values of the statistical moments, tumour tissues are categorised as either adenoma or carcinoma. A high level (> 90%) accuracy of differentiation between adenoma and carcinoma samples was achieved for each group. Differentiation between the high-grade and low-grade carcinoma samples was achieved with an accuracy of 87.5%. The results demonstrate that Mueller matrix mapping of the depolarisation distribution of prostate tumour tissues can accurately differentiate between adenoma and carcinoma, and between different grades of carcinoma. This represents a first step towards the implementation of 3D Mueller matrix mapping for clinical analysis and diagnosis of prostate tumours

    Brain metabolism changes in cases of impaired breathing or blood circulation in rodents evaluated by real time optical spectroscopy methods

    Get PDF
    The aim of the study was to compare the metabolic activity of brain cortex after the acute hypoxia caused by the impairment of breathing or blood circulation. Male Wistar rats were randomized in two groups: impaired breathing and blood circulation failure groups. Fluorescence under 365 and 450 nm excitation and diffuse reflectance intensity at 550-820 nm range were estimated. We found that after long-term hypoxic conditions, notable metabolic changes occur. We suppose that oxygen deficiency causes an activation of the GABA shunt mechanism. In cases of blood circulation failure, fluorescence intensity changes faster than in cases of breathing impairment

    Real-time laser speckle contrast imaging for intraoperative neurovascular blood flow assessment: animal experimental study

    Get PDF
    The use of various blood flow control methods in neurovascular interventions is crucial for reducing postoperative complications. Neurosurgeons worldwide use different methods, such as contact Dopplerography, intraoperative indocyanine videoangiography (ICG) video angiography, fluorescein angiography, flowmetry, intraoperative angiography, and direct angiography. However, there is no noninvasive method that can assess the presence of blood flow in the vessels of the brain without the introduction of fluorescent substances throughout the intervention. The real-time laser-speckle contrast imaging (LSCI) method was studied for its effectiveness in controlling blood flow in standard cerebrovascular surgery cases in rat common carotid arteries, such as proximal occlusion, trapping, reperfusion, anastomosis, and intraoperative vessel thrombosis. The real-time LSCI method is a promising method for use in neurosurgical practice. This approach allows timely diagnosis of intraoperative disturbance of blood flow in vessels in cases of clip occlusion or thrombosis. Additionally, LSCI allows us to reliably confirm the functioning of the anastomosis and reperfusion after removal of the clips and thrombolysis in real time. An unresolved limitation of the method is noise from movements, but this does not reduce the value of the method. Additional research is required to improve the quality of the data obtained

    A complex morphofunctional approach for zinc toxicity evaluation in rats

    No full text
    Abstract Anthropogenic activity causes the introduction of zinc compounds into the biological cycle in mining and processing sites and its accumulation in organs and tissues, causing systemic toxicity. A cumulative effect of zinc is predominantly neurotoxic and it also affects the respiratory, cardiovascular and digestive systems. This study evaluates the effects of single-dose intragastric administration of 100 mg/kg zinc succinate on the structure and function of organs and tissues in male Wistar rats 1 month after treatment. The presented morphofunctional approach for the toxicity evaluation included the study of behavioral responses using the automated Laboras® complex, fluorescent spectral analysis of the NADH and FAD activity and histological evaluation of animal organs and tissues. The results of the behavioral activity assessment showed a significant decrease in animals’ motor activity, whereas the fluorescence spectra analysis demonstrated a decrease in coenzyme NADH without the reduction of FAD levels. We detected toxic and dystrophic changes in the cerebral cortex, heart, lungs and liver tissues. Our original multiparametric approach enables a comprehensive assessment of the long-term toxic effects of the metal salts such as zinc succinate, especially in the cerebral cortex at the doses much lower than the acute LD50 reported for the common zinc salts
    corecore