27 research outputs found

    Near-field propagation of tsunamis from megathrust earthquakes

    Get PDF
    We investigate controls on tsunami generation and propagation in the near-field of great megathrust earthquakes using a series of numerical simulations of subduction and tsunamigenesis on the Sumatran forearc. The Sunda megathrust here is advanced in its seismic cycle and may be ready for another great earthquake. We calculate the seafloor displacements and tsunami wave heights for about 100 complex earthquake ruptures whose synthesis was informed by reference to geodetic and stress accumulation studies. Remarkably, results show that, for any near-field location: (1) the timing of tsunami inundation is independent of slip-distribution on the earthquake or even of its magnitude, and (2) the maximum wave height is directly proportional to the vertical coseismic displacement experienced at that location. Both observations are explained by the dominance of long wavelength crustal flexure in near-field tsunamigenesis. The results show, for the first time, that a single estimate of vertical coseismic displacement might provide a reliable short-term forecast of the maximum height of tsunami waves

    Effects of transient water mass redistribution associated with a tsunami wave on Earth's pole path

    Get PDF
    We have quantified the effects of a water mass redistribution associated with the propagation of a tsunami wave on the Earths pole path and on the Length-Of-Day (LOD) and applied our modeling results to the tsunami following the 2004 giant Sumatra earthquake. We compared the result of our simulations on the instantaneous rotational axis variations with the preliminary instrumental evidence on the pole path perturbation (which has not been confirmed) registered just after the occurrence of the earthquake. The detected perturbation in the pole path showed a step-like discontinuity that cannot be attributed to the effect of a seismic dislocation. Our results show that the tsunami induced instantaneous rotational pole perturbation is indeed characterized by a step-like discontinuity compatible with the observations but its magnitude is almost one hundred times smaller than the detected one. The LOD variation induced by the water mass redistribution turns out to be not significant because the total effect is smaller than current measurements uncertainties

    Testing the improvement of ShakeMaps using f inite-f ault models and synthetic seismograms

    Get PDF
    ShakeMap package uses empirical ground motion prediction equations (GM PEs) to estimate the ground motion where recorded data are not available. Recorded and estimated values are then interpolated in order to produce a shaking map associated to the considered event. Anyway GMPEs account only for average characteristics of source and wave propagation processes. Within the framework of the DPC-INGV S3 project (2007-09), we evaluate whether the inclusion of directivity effects in GMPEs (companion paper Spagnuolo et al., 2010) or the use of synthetic seismograms from finite-fault rupture models may improve the ShakeMap evaluation. An advantage of using simulated motions from kinematic rupture models is that source effects, as rupture directivity, are directly included in the synthetics. This is particularly interesting in Italy where the regional GMPEs, based on a few number of near-source records for moderate-to-large earthquakes, are not reliable for estimating ground motion in the vicinity of the source. In this work we investigated how and if the synthetic seismograms generated with finite-fault models can be used in place of (or in addition to) GMPEs within the ShakeMap methodology. We assumed a description of the rupture model with gradually increasing details, from a simple point source to a kinematic rupture history obtained from inversion of strong-motion data. According to the available information synthetic seismograms are calculated with methods that account for the different degree of approximation in source properties. We chose the M w 6.9 2008 Iwate-M iyagi (Japan) earthquake as a case study. This earthquake has been recorded by a very large number of stations and the corresponding ShakeMap relies almost totally on the recorded ground motions. Starting from this ideal case, we removed a number of stations in order to evaluate the deviations from the reference map and the sensitivity of the map to the number of stations used. The removed data are then substituted with synthetic values calculated assuming different source approximations, and the resulting maps are compared to the original ones (containing observed data only). The use of synthetic seismograms computed for finite-fault rupture models produces, in general, an improvement of the calculated ShakeMaps, especially when synthetics are used to integrate real data. When real data are not available and ShakeMap is estimated using GMPEs only, the improvement adding simulated values depends on the considered strong-motion parameters

    A first appraisal of the seismogenic and tsunamigenic potential of the largest fault systems in the westernmost Mediterranean

    Get PDF
    15 pages, 10 figures, 3 tables, supplementary material https://doi.org/10.1016/j.margeo.2022.106749.-- Data availability: The data (3D complex mesh of the ARFS and rake values, and the resulting grid files of the tsunami simulations containing the maximum wave amplitude) are archived at PANGAEA repository (https://doi.pangaea.de/10.1594/PANGAEA.941092).-- The EMODnet bathymetry is available at https://www.emodnet-bathymetry.eu/. The stochastic slip distributions have been produced by the code ANTI-FASc (https://github.com/antonioscalaunina/ANTI-FASc) a platform partially based on the code k223d (Herrero and Murphy, 2018 available at https://github.com/s-murfy/k223d), in turn based on the slipk2 (available at https://github.com/andherit/slipk2) and the trilateration codes (available at https://github.com/andherit/trilateration)The westernmost Mediterranean hosts part of the plate boundary between the European and African tectonic plates. Based on the scattered instrumental seismicity, this boundary has been traditionally interpreted as a wide zone of diffuse deformation. However, recent seismic images and seafloor mapping studies support that most of the plate convergence may be accommodated in a few tectonic structures, rather than in a broad region. Historical earthquakes with magnitudes Mw > 6 and historical tsunamis support that the low-to-moderate instrumental seismicity might also have led to underestimation of the seismogenic and tsunamigenic potential of the area. We evaluate the largest active faults of the westernmost Mediterranean: the reverse Alboran Ridge, and the strike-slip Carboneras, Yusuf and Al-Idrissi fault systems. For the first time, we use a dense grid of modern seismic data to characterize the entire dimensions of the main fault systems, accurately describe the geometry of these structures and estimate their seismic source parameters. Tsunami scenarios have been tested based on 3D-surfaces and seismic source parameters, using both uniform and heterogeneous slip distributions. The comparison of our results with previous studies, based on limited information on the fault geometry and kinematics, indicates that accurate fault geometries and heterogeneous slip distributions are needed to properly assess the seismic and tsunamigenic potential in this area. Based on fault scaling relations, the four fault systems have a large seismogenic potential, being able to generate earthquakes with Mw > 7. The reverse Alboran Ridge Fault System has the largest tsunamigenic potential, being able to generate a tsunami wave amplitude greater than 3 m in front of the coasts of Southern Spain and Northern AfricaThis work is supported by the Cluster of Excellence “The Future Ocean”, within the framework of the Excellence Initiative by the Deutsche Forschungsgemeinschaft (DFG) on behalf of the German federal and state governments. This study benefited from an EU Marie Skłodowska-Curie Individual Fellowship to LGP (H2020-MSCA-IF-2017 796013). LGP, CS, FM and RB acknowledge the resources made available by the SISMOLAB-3D at INGV. This work has been carried out in collaboration with the Grup de Recerca Consolidat de la Generalitat de Catalunya “Barcelona Center for Subsurface Imaging” (2017 SGR 1662), and acknowledges the ICM “Severo Ochoa Centre of Excellence” accreditation (CEX2019-000928-S)Peer reviewe

    Il Centro Allerta Tsunami (CAT) dell’INGV

    Get PDF
    The Tsunami Alert Centre of the INGV (CAT-INGV) was created with the aim of contributing to the mitigation of the risk due to tsunamis triggered by earthquakes on the Italian and Mediterranean coasts. Tsunamis of seismic origin, in addition to being the most frequent, are those that can be detected more quickly. Seismic waves, in fact, travel in the crust with a much higher speed than that of tsunami waves. With effective seismic networks connected in real time, an "Early Warning" system can be implemented, i.e. a system capable of sending an alert signal before the arrival of the tsunami waves, at least from a certain distance from the source. The CAT-INGV has two main tasks. The first one is to provide alerts to the competent authorities in the event of potential tsunamigenic earthquakes in the Mediterranean, taking into account the criteria defined by the Department of Civil Protection for this purpose. The second one consists in carrying out the necessary studies for the definition of the probabilistic danger of tsunamis for the Italian coasts, starting from those of seismic origin (Seismic Probabili-stic Tsunami Hazard Analysis, SPTHA). In this contribution the first aspect is described, while the realization of the studies on hazard at the Mediterranean scale is the subject of research described in various recent articles (Lorito et al., 2015; Grezio et al., 2017; Selva et al., 2017a; Selva et al., 2017b). The TSUMAPS-NEAM project, funded by the European Commission and concluded at the end of 2017, provided the first hazard map for the Mediterranean region and the north-east Atlantic (Basili et al., 2017).Published91-975T. Modelli di pericolosità sismica e da maremotoN/A or not JC

    The Italian Earthquakes and Tsunami Monitoring and Surveillance Systems

    Get PDF
    The Osservatorio Nazionale Terremoti (ONT) is the Italian seismic operational centre for monitoring earthquake, it is part of Istituto Nazionale di Geofisica e Vulcanologia (INGV) the largest Italian research institution, with focus in Earth Sciences. INGV runs the Italian National Seismic Network (network code IV) and other networks at national scale for monitoring earthquakes and tsunami. INGV is a primary node of European Integrated Data Archive (EIDA) for archiving and distributing, continuous, quality checked seismic waveforms (strong motion and weak motion recordings). ONT designed the data acquisition system to accomplish, in near-real-time, automatic earthquake detection, hypocentre and magnitude determination and evaluation of moment tensors, shake maps and other products. Database archiving of all parametric results are closely linked to the existing procedures of the INGV seismic monitoring environment and surveillance procedures. ONT organize the Italian earthquake surveillance service and the tsunami alert service (INGV is Tsunami Service Provider of the ICG/NEAM for the entire Mediterranean basin). We provide information to the Dipartimento di Protezione Civile (DPC) and to several Mediterranean countries. Earthquakes information are revised routinely by the analysts of the Italian Seismic Bulletin. The results are published on the web and are available to the scientific community and the general public.PublishedMontreal1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunam

    Rupture Kinematics and Structural‐Rheological Control of the 2016 Mw 6.1 Amatrice (Central Italy) Earthquake From Joint Inversion of Seismic and Geodetic Data

    No full text
    We investigate the rupture process of the 2016, Mw6.1 Amatrice earthquake, the first shock of a seismic sequence characterized by three damaging earthquakes occurred in Central Italy between August and October. We jointly invert strong motion, High-Rate GPS data, GPS and DInSAR displacements and we adopt ad-hoc velocity profiles of the crust below each station. The retrieved source model reveals a high degree of complexity, characterized by a prominent bi-lateral rupture with low slip at the hypocentre, two well-separated slip patches and a rupture front accelerating when breaking the largest patch. The rupture of the main asperity features a slip-velocity pulse that is impeded ahead of its current direction and splits into two pulses. In this fault section we find clues of structural and rheological control of the rupture propagation due to the fault system segmentation.Published12302-123113T. Sorgente sismicaJCR Journa

    Appraising the Early-est earthquake monitoring system for tsunami alerting at the Italian Candidate Tsunami Service Provider

    No full text
    In this paper we present and discuss the performance of the procedure for earthquake location and characterization implemented in the Italian Candidate Tsunami Service Provider at the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Rome. Following the ICG/NEAMTWS guidelines, the first tsunami warning messages are based only on seismic information, i.e., epicenter location, hypocenter depth, and magnitude, which are automatically computed by the software Early-est. Early-est is a package for rapid location and seismic/tsunamigenic characterization of earthquakes. The Early-est software package operates using offline-event or continuous-real-time seismic waveform data to perform trace processing and picking, and, at a regular report interval, phase association, event detection, hypocenter location, and event characterization. Early-est also provides mb, Mwp, and Mwpd magnitude estimations. mb magnitudes are preferred for events with Mwp ≲ 5.8, while Mwpd estimations are valid for events with Mwp ≳ 7.2. In this paper we present the earthquake parameters computed by Early-est between the beginning of March 2012 and the end of December 2014 on a global scale for events with magnitude M ≥ 5.5, and we also present the detection timeline. We compare the earthquake parameters automatically computed by Early-est with the same parameters listed in reference catalogs. Such reference catalogs are manually revised/verified by scientists. The goal of this work is to test the accuracy and reliability of the fully automatic locations provided by Early-est. In our analysis, the epicenter location, hypocenter depth and magnitude parameters do not differ significantly from the values in the reference catalogs. Both mb and Mwp magnitudes show differences to the reference catalogs. We thus derived correction functions in order to minimize the differences and correct biases between our values and the ones from the reference catalogs. Correction of the Mwp distance dependency is particularly relevant, since this magnitude refers to the larger and probably tsunamigenic earthquakes. Mwp values at stations with epicentral distance Δ ≲ 30° are significantly overestimated with respect to the CMT-global solutions, whereas Mwp values at stations with epicentral distance Δ ≳ 90° are slightly underestimated. After applying such distance correction the Mwp provided by Early-est differs from CMT-global catalog values of about δ Mwp ≈ 0.0 ∓ 0.2. Early-est continuously acquires time-series data and updates the earthquake source parameters. Our analysis shows that the epicenter coordinates and the magnitude values converge within less than 10 min (5 min in the Mediterranean region) toward the stable values. Our analysis shows that we can compute Mwp magnitudes that do not display short epicentral distance dependency overestimation, and we can provide robust and reliable earthquake source parameters to compile tsunami warning messages within less than 15 min after the event origin time.Published2019–20366T. Studi di pericolosità sismica e da maremotoJCR Journa

    Optimal time alignment of tide-gauge tsunami waveforms in nonlinear inversions: Application to the 2015 Illapel (Chile) earthquake

    No full text
    Tsunami waveform inversion is often used to retrieve information about the causative seismic tsunami source. Tide gauges record tsunamis routinely; however, compared to deep-ocean sensor data, tide-gauge waveform modeling is more difficult due to coarse/inaccurate local bathymetric models resulting in a time mismatch between observed and predicted waveforms. This can affect the retrieved tsunami source model, thus limiting the use of tide-gauge data. A method for nonlinear inversion with an automatic optimal time alignment (OTA), calculated by including a time shift parameter in the cost function, is presented. The effectiveness of the method is demonstrated through a series of synthetic tests and is applied as part of a joint inversion with interferometric synthetic aperture radar data for the slip distribution of the 2015 Mw 8.3 Illapel earthquake. The results show that without OTA, the resolution on the slip model degrades significantly and that using this method for a real case strongly affects the retrieved slip pattern.Published11226-112352T. Sorgente SismicaJCR Journa

    Near-source high-rate GPS, strong motion and InSAR observations to image the 2015 Lefkada (Greece) Earthquake rupture history

    No full text
    International audienceThe 2015/11/17 Lefkada (Greece) earthquake ruptured a segment of the Cephalonia Transform Fault (CTF) where probably the penultimate major event was in 1948. Using near-source strong motion and high sampling rate GPS data and Sentinel-1A SAR images on two tracks, we performed the inversion for the geometry, slip distribution and rupture history of the causative fault with a three-step self-consistent procedure, in which every step provided input parameters for the next one. Our preferred model results in a ~70° ESE-dipping and ~13° N-striking fault plane, with a strike-slip mechanism (rake ~169°) in agreement with the CTF tectonic regime. This model shows a bilateral propagation spanning ~9 s with the activation of three main slip patches, characterized by rise time and peak slip velocity in the ranges 2.5-3.5 s and 1.4-2.4 m/s, respectively, corresponding to 1.2-1.8 m of slip which is mainly concentrated in the shallower ( 6) earthquakes to the northern and to the southern boundaries of the 2015 causative fault cannot be excluded
    corecore