113 research outputs found
Prospective study on prevalence, intensity, type, and therapy of acute pain in a second-level urban emergency department
Aim: Pain represents the most frequent cause for patient admission to emergency departments (EDs). Oligoanalgesia is a common problem in this field. The aims of this study were to assess prevalence and intensity of pain in patients who visited a second-level urban ED and to evaluate the efficacy of pharmacological treatment administered subsequent to variations in pain intensity.
Methods: A 4-week prospective observational study was carried out on 2,838 patients who visited a second-level urban ED. Pain intensity was evaluated using the Numeric Rating Scale at the moment of triage. The efficacy of prescribed analgesic therapy was evaluated at 30 and 60 minutes, and at discharge. Data concerning pain intensity were classified as absent, slight, mild, or severe. Pain was evaluated in relation to the prescribed therapy.
Results: Pain prevalence was 70.7%. Traumatic events were the primary cause in most cases (40.44%), followed by pain linked to urologic problems (13.52%), abdominal pain (13.39%), and nontraumatic musculoskeletal pain (7.10%). Only 32.46% of patients were given pharmacological therapy. Of these, 76% reported severe pain, 19% moderate, and 5% slight, and 66% received nonsteroidal anti-inflammatory drugs or paracetamol, 4% opioids, and 30% other therapies. A difference of at least 2 points on the Numerical Rating Scale was observed in 84% of patients on reevaluation following initial analgesic therapy.
Conclusion: Pain represents one of the primary reasons for visits to EDs. Although a notable reduction in pain intensity has been highlighted in patients who received painkillers, results show that inadequate treatment of pain in ED continues to be a problem
MiOS, an integrated imaging and computational strategy to model gene folding with nucleosome resolution
The linear sequence of DNA provides invaluable information about genes and their regulatory elements along chromosomes. However, to fully understand gene function and regulation, we need to dissect how genes physically fold in the three-dimensional nuclear space. Here we describe immuno-OligoSTORM, an imaging strategy that reveals the distribution of nucleosomes within specific genes in super-resolution, through the simultaneous visualization of DNA and histones. We combine immuno-OligoSTORM with restraint-based and coarse-grained modeling approaches to integrate super-resolution imaging data with Hi-C contact frequencies and deconvoluted micrococcal nuclease-sequencing information. The resulting method, called Modeling immuno-OligoSTORM, allows quantitative modeling of genes with nucleosome resolution and provides information about chromatin accessibility for regulatory factors, such as RNA polymerase II. With Modeling immuno-OligoSTORM, we explore intercellular variability, transcriptional-dependent gene conformation, and folding of housekeeping and pluripotency-related genes in human pluripotent and differentiated cells, thereby obtaining the highest degree of data integration achieved so far to our knowledge
Different fetal-neonatal outcomes in siblings born to a mother with Graves-Basedow disease after total thyroidectomy: a case series
ABSTRACT:INTRODUCTION: We describe three different fetal or neonatal outcomes in
the offspring of a mother who had persistent circulating thyrotropin receptor
antibodies despite having undergone a total thyroidectomy several years before.
CASE PRESENTATION: The three different outcomes were an intrauterine death, a
mild and transient fetal and neonatal hyperthyroidism and a severe fetal and
neonatal hyperthyroidism that required specific therapy.
CONCLUSIONS: The three cases are interesting because of the different outcomes,
the absence of a direct correlation between thyrotropin receptor antibody levels
and clinical signs, and the persistence of thyrotropin receptor antibodies
several years after a total thyroidectomy
Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV
This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qq̅ continuum events near the Υ(4S) resonance are presented. Using 20.8 fb-1 of data on the Υ(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(B⃗Ds+X)=(10.93±0.19±0.58±2.73)% and B(B⃗Ds*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections σ(e+e-→Ds+X)×B(Ds+→φπ+)=7.55±0.20±0.34pb and σ(e+e-→Ds*±X)×B(Ds+→φπ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the Υ(4S) mass. The branching fractions ΣB(B⃗Ds(*)+D(*))=(5.07±0.14±0.30±1.27)% and ΣB(B⃗Ds*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
A Ten-microRNA Expression Signature Predicts Survival in Glioblastoma
Glioblastoma (GBM) is the most common and aggressive primary brain tumor with very poor patient median survival. To identify a microRNA (miRNA) expression signature that can predict GBM patient survival, we analyzed the miRNA expression data of GBM patients (n = 222) derived from The Cancer Genome Atlas (TCGA) dataset. We divided the patients randomly into training and testing sets with equal number in each group. We identified 10 significant miRNAs using Cox regression analysis on the training set and formulated a risk score based on the expression signature of these miRNAs that segregated the patients into high and low risk groups with significantly different survival times (hazard ratio [HR] = 2.4; 95% CI = 1.4–3.8; p<0.0001). Of these 10 miRNAs, 7 were found to be risky miRNAs and 3 were found to be protective. This signature was independently validated in the testing set (HR = 1.7; 95% CI = 1.1–2.8; p = 0.002). GBM patients with high risk scores had overall poor survival compared to the patients with low risk scores. Overall survival among the entire patient set was 35.0% at 2 years, 21.5% at 3 years, 18.5% at 4 years and 11.8% at 5 years in the low risk group, versus 11.0%, 5.5%, 0.0 and 0.0% respectively in the high risk group (HR = 2.0; 95% CI = 1.4–2.8; p<0.0001). Cox multivariate analysis with patient age as a covariate on the entire patient set identified risk score based on the 10 miRNA expression signature to be an independent predictor of patient survival (HR = 1.120; 95% CI = 1.04–1.20; p = 0.003). Thus we have identified a miRNA expression signature that can predict GBM patient survival. These findings may have implications in the understanding of gliomagenesis, development of targeted therapy and selection of high risk cancer patients for adjuvant therapy
Structured models of cell migration incorporating molecular binding processes
The dynamic interplay between collective cell movement and the various
molecules involved in the accompanying cell signalling mechanisms plays a
crucial role in many biological processes including normal tissue development
and pathological scenarios such as wound healing and cancer. Information about
the various structures embedded within these processes allows a detailed
exploration of the binding of molecular species to cell-surface receptors
within the evolving cell population. In this paper we establish a general
spatio-temporal-structural framework that enables the description of molecular
binding to cell membranes coupled with the cell population dynamics. We first
provide a general theoretical description for this approach and then illustrate
it with two examples arising from cancer invasion
Measurement of the Ratio of b Quark Production Cross Sections in Antiproton-Proton Collisions at 630 GeV and 1800 GeV
We report a measurement of the ratio of the bottom quark production cross
section in antiproton-proton collisions at 630 GeV to 1800 GeV using bottom
quarks with transverse momenta greater than 10.75 GeV identified through their
semileptonic decays and long lifetimes. The measured ratio
sigma(630)/sigma(1800) = 0.171 +/- .024 +/- .012 is in good agreement with
next-to-leading order (NLO) quantum chromodynamics (QCD)
The future for ATBC conservation declarations
Turton, SM ORCiD: 0000-0001-6279-7682The Association for Tropical Biology and Conservation (ATBC) is the
world's largest international and professional organization whose
mission is to promote research, education, and communication
about the world's tropical ecosystems. A core component of ATBC’s
mandate is to engage in conservation science and capacity-building
activities on a global and regional basis. It therefore has a critical role
to play in advocating the use of science and other evidence-based
approaches to inform conservation practices and policies at local,
national, and global levels, as described further in the 2015–2025
Strategic Plan.1 The main purpose of our commentary is to enlighten
members of ATBC and the wider tropical conservation community of
the importance and value of ATBC conference declarations as instruments
for identifying and tackling significant conservation issues
across the tropics. We also share our combined insights and
recommendations on how to prepare, deliver, and evaluate any future
ATBC conference declarations
- …