4 research outputs found

    A cluster randomized trial comparing deltamethrin and bendiocarb as insecticides for indoor residual spraying to control malaria on Bioko Island, Equatorial Guinea.

    Get PDF
    BACKGROUND: Indoor residual spraying (IRS) has been used on Bioko for malaria control since 2004. In 2013 the insecticide was changed from bendiocarb to deltamethrin. Shortly after this change, there was a marked increase in malaria prevalence on the island. This trial was carried out to compare the effectiveness of bendiocarb and deltamethrin for use in IRS on Bioko. METHODS: Twenty-four clusters of houses were randomized to receive IRS with either bendiocarb or deltamethrin. Approximately 3 months after the intervention, the prevalence of malaria and levels of haemoglobin were measured in children aged 2-14 years in each cluster. RESULTS: Prevalence of malaria in 2-14 year olds was lower in the bendiocarb arm (16.8, 95 % CI 11.1-24.7, N = 1374) than in the deltamethrin arm (23.2, 95 % CI 16.0-32.3, N = 1330) but this difference was not significant (p = 0.390), even after adjusting for covariates (p = 0.119). Mean haemoglobin in children was marginally higher in the bendiocarb clusters (11.6 g/dl, 95 % CI 11.5-11.8, N = 1326) than in the deltamethrin clusters (11.5 g/dl, 95 % CI 11.3-11.7, N = 1329). This difference was borderline significant after adjusting for covariates (p = 0.049). CONCLUSIONS: The results are suggestive of bendiocarb being more effective at preventing malaria on Bioko although evidence for this was weak. The results are likely due to the fact that local vectors remain fully susceptible to bendiocarb whereas subsequent tests have shown resistance to deltamethrin

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Therapeutic efficacy of artesunate-amodiaquine and artemether-lumefantrine and polymorphism in Plasmodium falciparum kelch13-propeller gene in Equatorial Guinea

    Get PDF
    International audienceBackground: Artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) are the currently recommended first-and second-line therapies for uncomplicated Plasmodium falciparum infections in Equatorial Guinea. This study was designed to evaluate the efficacy of these artemisinin-based combinations and detect mutations in P. falciparum kelch13-propeller domain gene (Pfkelch13). Methods: A single-arm prospective study evaluating the efficacy of ASAQ and AL at three sites: Malabo, Bata and Ebebiyin was conducted between August 2017 and July 2018. Febrile children aged six months to 10 years with confirmed uncomplicated P. falciparum infection and other inclusion criteria were sequentially enrolled first in ASAQ and then in AL at each site, and followed up for 28 days. Clinical and parasitological parameters were assessed. The primary endpoint was PCR-adjusted adequate clinical and parasitological response (ACPR). Samples on day-0 were analysed for mutations in Pfkelch13 gene. Results: A total 264 and 226 patients were enrolled in the ASAQ and AL treatment groups, respectively. Based on per-protocol analysis, PCR-adjusted cure rates of 98.6% to 100% and 92.4% to 100% were observed in patients treated with ASAQ and AL, respectively. All study children in both treatment groups were free of parasitaemia by day-3. Of the 476 samples with interpretable results, only three samples carried non-synonymous Pfkelch13 mutations (E433D and A578S), and none of them is the known markers associated with artemisinin resistance. Conclusion: The study confirmed high efficacy of ASAQ and AL for the treatment of uncomplicated falciparum infections as well as the absence of delayed parasite clearance and Pfkelch13 mutations associated with artemisinin resistance. Continued monitoring of the efficacy of these artemisinin-based combinations, at least every two years, along with molecular markers associated with artemisinin and partner drug resistance is imperative to inform national malaria treatment policy and detect resistant parasites early
    corecore