31,980 research outputs found
A finite difference scheme for the equilibrium equations of elastic bodies
A compact difference scheme is described for treating the first-order system of partial differential equations which describe the equilibrium equations of an elastic body. An algebraic simplification enables the solution to be obtained by standard direct or iterative techniques
A compact finite difference scheme for div(Rho grad u) - q2u = 0
A representative class of elliptic equations is treated by a dissipative compact finite difference scheme and a general solution technique by relaxation methods is discussed in detail for the Laplace equation
Specific heat of BaKFeAs, and a new method for identifying the electron contribution: two electron bands with different energy gaps in the superconducting state
We report measurements of the specific heat of
BaKFeAs, an Fe-pnictide superconductor with
= 36.9 K, for which there are suggestions of an unusual electron pairing
mechanism. We use a new method of analysis of the data to derive the parameters
characteristic of the electron contribution. It is based on comparisons of
-model expressions for the electron contribution with the total
measured specific heat, which give the electron contribution directly. It
obviates the need in the conventional analyses for an independent, necessarily
approximate, determination of the lattice contribution, which is subtracted
from the total specific heat to obtain the electron contribution. It eliminates
the uncertainties and errors in the electron contribution that follow from the
approximations in the determination of the lattice contribution. Our values of
the parameters characteristic of the electron contribution differ significantly
from those obtained in conventional analyses of specific-heat data for five
similar hole-doped BaFeAs superconductors, which also differ
significantly among themselves. They show that the electron density of states
is comprised of contributions from two electron bands with
superconducting-state energy gaps that differ by a factor 3.8, with 77
coming from the band with the larger gap. The variation of the specific heat
with magnetic field is consistent with extended -wave pairing, one of the
theoretical predictions. The relation between the densities of states and the
energy gaps in the two bands is not consistent with a theoretical model based
on interband interactions alone. Comparison of the normal-state density of
states with band-structure calculations shows an extraordinarily large
effective mass enhancement, for which there is no precedent in similar
materials and no theoretical explanation.Comment: 30 pages, 7 figures, submitte
Expansion Potential for Irrigation within the Mississippi Delta Region
17.6 million acres, or 73 percent, of the Mississippi Delta Region is currently cropland and possesses the physical characteristics of slope, texture and soil type which are recommended for irrigation. Economic feasibility of expanding irrigation by flood, furrow and center pivot methods were examined under 24 scenarios representing two sets of crop prices, yield levels, production costs, opportunity costs and six crop rotations. Irrigation was economically feasible for 56 to 100 percent of the cropland across all scenarios. Approximately 88 percent of the cropland can be economically irrigated with flood or furrow in its present form, 8 percent yield highest net returns if furrow irrigated following land forming and 4 percent can be economically irrigated only with center pivot systems
Succession narratives in family business: the case of Alessi
One of the most significant challenges facing family firms is how to successfully manage succession from one generation of leaders to the next. In this paper, we contribute to existing understandings of this complex and difficult process by exploring how successors use family business succession narratives to legitimate their succession. Building on a case study of Alessi, a family-owned Italian design firm, we draw on the literature on organizational narratives to develop a framework for understanding family business succession narratives and present a typology of some of the narrative strategies that can be used during succession. We conclude with a discussion of the theoretical and practical ramifications of a narrative view of succession in family firms
A Physical Model for SN 2001ay, a normal, bright, extremely slowly declining Type Ia supernova
We present a study of the peculiar Type Ia supernova 2001ay (SN 2001ay). The
defining features of its peculiarity are: high velocity, broad lines, and a
fast rising light curve, combined with the slowest known rate of decline. It is
one magnitude dimmer than would be predicted from its observed value of
Delta-m15, and shows broad spectral features. We base our analysis on detailed
calculations for the explosion, light curves, and spectra. We demonstrate that
consistency is key for both validating the models and probing the underlying
physics. We show that this SN can be understood within the physics underlying
the Delta-m15 relation, and in the framework of pulsating delayed detonation
models originating from a Chandrasekhar mass, white dwarf, but with a
progenitor core composed of 80% carbon. We suggest a possible scenario for
stellar evolution which leads to such a progenitor. We show that the unusual
light curve decline can be understood with the same physics as has been used to
understand the Delta-m15 relation for normal SNe Ia. The decline relation can
be explained by a combination of the temperature dependence of the opacity and
excess or deficit of the peak luminosity, alpha, measured relative to the
instantaneous rate of radiative decay energy generation. What differentiates SN
2001ay from normal SNe Ia is a higher explosion energy which leads to a shift
of the Ni56 distribution towards higher velocity and alpha < 1. This result is
responsible for the fast rise and slow decline. We define a class of SN
2001ay-like SNe Ia, which will show an anti-Phillips relation.Comment: 35 pages, 14 figures, ApJ, in pres
The Infrared Imaging Spectrograph (IRIS) for TMT: the atmospheric dispersion corrector
We present a conceptual design for the atmospheric dispersion corrector (ADC)
for TMT's Infrared Imaging Spectrograph (IRIS). The severe requirements of this
ADC are reviewed, as are limitations to observing caused by uncorrectable
atmospheric effects. The requirement of residual dispersion less than 1
milliarcsecond can be met with certain glass combinations. The design decisions
are discussed and the performance of the design ADC is described. Alternative
options and their performance tradeoffs are also presented.Comment: SPIE Astronomical Instrumentation 201
- …