880 research outputs found

    Comparison of submillimeter and ultraviolet observations of neutral carbon toward Zeta Ophiuchi

    Get PDF
    We have observed the ^3P_1 → ^3P_0 ground state transition of C_I emission toward ζ Oph. We compare this observation with predictions made from Copernicus ultraviolet absorption measurements of the population of the ^3P_1 level and with millimeter wave observations of CO

    The abundances of atomic carbon and carbon monoxide compared with visual extinction in the Ophiuchus molecular cloud complex

    Get PDF
    We have observed emission from the 492 GHz lines of C I toward six positions in the Ophiuchus molecular cloud complex for which accurate visual extinctions are available. We find that the column density of C I increases with A_v to greater than 2 x 10^(17) cm^(-2) at 100 mag, the column-averaged fractional abundance reaches a peak of about 2.2 x 10^(-5) for A_v in the range 4-11 mag and the column-averaged abundance ratio of C I to CO decreases with A_v from about 1 at 2 mag to greater than ~0.03 at 100 mag. These results imply that, while C I is not the primary reservoir of gaseous carbon even at cloud edges, its fractional abundance remains high for at least 10 mag into the cloud and may be significant at even greater depths

    Chlorine in dense interstellar clouds - The abundance of HCl in OMC-1

    Get PDF
    We report the first detection of a chlorine-bearing molecular species in the interstellar medium via emission from the J = 1 → 0 transition of HCl at 625.9 GHz toward OMC-1. The relative strengths, widths, and velocities of the resolved hyperfine components are consistent with moderate optical depth emission originating from dense, quiescent molecular cloud material (V_(LSR) = 9 km s^(-1)). The overall emission strength implies a fractional abundance of f(HCl/H_2) ~ (0.5-5.0) x 10^(-8), depending on the density of the emitting region. This is approximately an order of magnitude below previous theoretical estimates and a factor of 3-30 below the cosmic abundance of Cl. Recent laboratory work suggests that the lowered fractional abundance of HCl is caused by a combination of depletion onto grains with gas-phase loss processes such as the reaction of HCl with C^+

    First detection of the ground-state J_K = 1_0 → 0_0 submillimeter transition of interstellar ammonia

    Get PDF
    The J_K = 1_0 → 0_0 transition of ammonia at 572.5 GHz has been detected in OMC-1 from NASA's Kuiper Airborne Observatory. The central velocity of the line (V_(LSR)≈ 9 km s^(-1)) indicates that it originates in the molecular cloud material, not in the hot core. The derived filling factor of ≳ 0.09 in a 2' beam implies a source diameter of ≳ 35" if it is a single clump. This clump area is much larger than that derived from observations of the 1_1 inversion transition. The larger optical depth in the 1_0 → 0_0 transition (75-350) can account for the increased source area and line width as compared with those seen in the 1_1 inversion transition

    The molecular emission-line spectrum of IRC +10216 between 330 and 358 GHz

    Get PDF
    We have conducted a spectral line survey of IRC + 10216 using the Caltech Submillimeter Observatory to an average sensitivity of ≾95 mK. A deconvolution algorithm has been used to derive the continuous single-sideband spectrum from 330.2 to 358.1 GHz. A total of 56 spectral lines were detected of which 54 have been identified with 8 molecules and a total of 18 isotopomers. The observed lines are used to derive column densities and relative abundances for the detected species. Within this frequency range the spectral lines detected contribute the majority of the total flux emitted by IRC + 10216. We use the derived column densities and excitation temperatures to simulate the molecular line emission (assuming LTE) at frequencies up to 1000 GHz. The observed and simulated flux from line emission is compared to broadband total flux measurements and to dust emission assuming a power-law variation of the dust emissivity. We conclude that significant corrections for the line flux must be made to broadband flux measurements of IRC + 10216 at wavelengths longer than ~750 µm

    Oxidative Cyclizations of Tertiary Pentenols and the Synthesis of β-Carboline Alkaloids

    Get PDF
    This thesis describes the work carried out on two projects. The first chapter of the thesis discusses the application of the second generation Co(nmp)2 catalyst towards the oxidative cyclization of tertiary pentenols through a modified Mukaiyama aerobic oxidative cyclization procedure. The second chapter describes the progress made towards the synthesis of β-carboline alkaloids. The total synthesis of the alkaloid natural product cyclocapitelline is detailed along with the formal synthesis of the natural product chrysotricine

    On the Interpretation of the broad-band millimeter-wave flux from Orion

    Get PDF
    Spectral observations of the core of Orion A at wavelengths around 1.3 mm show a high density of strong, broad emission lines. The combined flux in lines with peak antenna temperatures stronger than 0.2 K accounts for approximately 40 percent of the broad-band millimeter-wave flux from the region. Thus the broad-band flux from Orion A is in large part due to sources other than dust emission

    Molecular abundances in OMC-1: The chemical composition of interstellar molecular clouds and the influence of massive star formation

    Get PDF
    We present here an investigation of the chemical composition of the various regions in the core of the Orion molecular cloud (OMC-1) based on results from the Caltech Owens Valley Radio Observatory (OVRO) millimeter-wave spectral line survey (Sutton et al.; Blake et al.). This survey covered a 55 GHz interval in the 1.3 mm (230 GHz) atmospheric window and contained emission from over 800 resolved spectral features. Of the 29 identified species 14 have a sufficient number of detected transitions to be investigated with an LTE "rotation diagram" technique, in which large numbers of lines are used to estimate both the rotational excitation and the overall abundance. The rotational temperatures and column densities resulting from these fits have then been used to model the emission from those remaining species which either have too few lines or which are too weak to be so analyzed. When different kinematic sources of emission are blended to produce a single feature, Gaussian fits have been used to derive the individual contributions to the total line profile. The uniformly calibrated data in the unique and extensive Caltech spectral line survey lead to accurate estimates of the chemical and physical parameters of the Orion molecular cloud, and place significant constraints on models of interstellar chemistry. A global analysis of the observed abundances shows that the markedly different chemical compositions of the kinematically and spatially distinct Orion subsources may be interpreted in the framework of an evolving, initially quiescent, gas-phase chemistry influenced by the process of massive star formation. The chemical composition of the extended Orion cloud complex is similar to that found in a number of other objects, but the central regions of OMC-1 have had their chemistry selectively altered by the radiation and high-velocity outflow from the young stars embedded deep within the interior of the molecular cloud. Specifically, the extended ridge clouds are inferred to have a low (subsolar) gas-phase oxygen content from the prevalence of reactive carbon-rich species like CN, CCH, and C_3H_2 also found in more truly quiescent objects such as TMC-1. The similar abundances of these and other simple species in clouds like OMC-1, Sgr B2, and TMC-1 lend support to gas-phase ion-molecule models of interstellar chemistry, but grain processes may also play a significant role in maintaining the overall chemical balance in such regions through selective depletion mechanisms and grain mantle processing. In contrast, the chemical compositions of the more turbulent plateau and hot core components of OMC-1 are dominated by high-temperature, shock-induced gas and grain surface neutral-neutral reaction processes. The high silicon/sulfur oxide and water content of the plateau gas is best modeled by fast shock disruption of smaller grain cores to release the more refractory elements followed by a predominantly neutral chemistry in the cooling postshock regions, while a more passive release of grain mantle products driven toward kinetic equilibrium most naturally explains the prominence of fully hydrogenated N-containing species like HCN, NH_3 , CH_3CN, and C_2H_5CN in the hot core. The clumpy nature of the outflow is illustrated by the high-velocity emission observed from easily decomposed molecules such as H_2CO. Areas immediately adjacent to the shocked core in which the cooler, ion-rich gas of the surrounding molecular cloud is mixed with water/oxygen rich gas from the plateau source are proposed to give rise to the enhanced abundances of complex internal rotors such as CH_30H, HCOOCH_3 , and CH_30CH_3 whose line widths are similar to carbon-rich species such as CN and CCH found in the extended ridge, but whose rotational temperatures are somewhat higher and whose spatial extents are much more compact

    The rotational emission-line spectrum of Orion A between 247 and 263 GHz

    Get PDF
    Results are presented from a molecular line survey of the core of the Orion molecular cloud between 247 and 263 GHz. The spectrum contains a total of 243 resolvable lines from 23 different chemical species. When combined with the earlier survey of Orion from 215 to 247 GHz by Sutton et al. (1985), the complete data set includes over 780 emission features from 29 distinct molecules. Of the 23 molecules detected in this survey, only NO, CCH, and HCO^+ were not identified in the lower frequency data. As a result of the supporting laboratory spectroscopy performed to supplement existing millimeter-wave spectral line catalogs, only 33 of the more than 780 lines remain unidentified, of which 16 occur in the upper frequency band. A significant chance remains that a number of these unidentified lines are due to transitions between states of either isotopically substituted or highly excited abundant and complex molecules such as CH_3OH, CH_3OCH_3, and HCOOCH_3, whose rotational spectra are poorly known at present. The very small percentage and weak strength of the unidentified lines implies that the dominant chemical constituents visible at millimeter wavelengths have been identified in the Orion molecular cloud
    • …
    corecore