117 research outputs found
A double-blind randomized controlled trial of the effects of eicosapentaenoic acid supplementation on muscle inflammation and physical function in patients undergoing colorectal cancer resection
BackgroundResection of colorectal cancer (CRC) initiates inflammation, mediated at least partly by NFĸB (nuclear factor kappa-light-chain-enhancer of activated B-cells), leading to muscle catabolism and reduced physical performance. Eicosapentaenoic acid (EPA) has been shown to modulate NFĸB, but evidence for its benefit around the time of surgery is limited.ObjectiveTo assess the effect of EPA supplementation on muscle inflammation and physical function around the time of major surgery.DesignIn a double-blind randomized control trial, 61 patients (age: 68.3 ± 0.95 y; 42 male) scheduled for CRC resection, received 3 g per day of EPA (n = 32) or placebo (n = 29) for 5-days before and 21-days after operation. Lean muscle mass (LMM) (via dual energy X-ray absorptiometry (DXA)), anaerobic threshold (AT) (via cardiopulmonary exercise testing (CPET)) and hand-grip strength (HG) were assessed before and 4-weeks after surgery, with muscle biopsies (m. vastus lateralis) obtained for the assessment of NF-ĸB protein expression.ResultsThere were no differences in muscle NFĸB between EPA and placebo groups (mean difference (MD) −0.002; 95% confidence interval (CI) −0.19 to 0.19); p = 0.98). There was no difference in LMM (MD 704.77 g; 95% CI -1045.6 g–2455.13 g; p = 0.42) or AT (MD 1.11 mls/kg/min; 95% CI -0.52 mls/kg/min to 2.74 mls/kg/min; p = 0.18) between the groups. Similarly, there was no difference between the groups in HG at follow up (MD 0.1; 95% CI -1.88 to 2.08; p = 0.81). Results were similar when missing data was imputed.ConclusionEPA supplementation confers no benefit in terms of inflammatory status, as judged by NFĸB, or preservation of LMM, aerobic capacity or physical function following major colorectal surgery
Molecular and Neural Adaptations to Neuromuscular Electrical Stimulation; Implications for Ageing Muscle
One of the most notable effects of ageing is an accelerated decline of skeletal muscle mass and function, resulting in various undesirable outcomes such as falls, frailty, and all-cause mortality. The loss of muscle mass directly leads to functional deficits and can be explained by the combined effects of individual fibre atrophy and fibre loss. The gradual degradation of fibre atrophy is attributed to impaired muscle protein homeostasis, while muscle fibre loss is a result of denervation and motor unit (MU) remodelling. Neuromuscular electrical stimulation (NMES), a substitute for voluntary contractions, has been applied to reduce muscle mass and functional declines. However, the measurement of the effectiveness of NMES in terms of its mechanism of action on the peripheral motor nervous system and neuromuscular junction, and multiple molecular adaptations at the single fibre level is not well described. NMES mediates neuroplasticity and upregulates a number of neurotropic factors, manifested by increased axonal sprouting and newly formed neuromuscular junctions. Repeated involuntary contractions increases the activity levels of oxidative enzymes, increases fibre capillarisation and can influence fibre type conversion. Additionally, following NMES muscle protein synthesis is increased as well as functional capacity. This review will detail the neural, molecular, metabolic and functional adaptations to NMES in human and animal studies
Exploring the Association between Vascular Dysfunction and Skeletal Muscle Mass, Strength and Function in Healthy Adults: A Systematic Review
Background: The prevalence of vascular dysfunction increases with advancing age, as does the loss of muscle mass, strength and function. This systematic review explores the association between vascular dysfunction and skeletal muscle health in healthy adults. Methods: EMBASE and MEDLINE were searched for cross-sectional and randomized controlled studies between January 2009 and April 2019, with 33 out of 1246 studies included based on predefined criteria. Assessments of muscular health included muscle mass, strength and function. Macrovascular function assessment included arterial stiffness (pulse wave velocity or augmentation index), carotid intima-media thickness, and flow-mediated dilation. Microvascular health assessment included capillary density or microvascular flow (contrast enhanced ultrasound). Results: All 33 studies demonstrated a significant association between vascular function and skeletal muscle health. Significant negative associations were reported between vascular dysfunction and -muscle strength (10 studies); -mass (9 studies); and -function (5 studies). Nine studies reported positive correlations between muscle mass and microvascular health. Conclusions: Multiple studies have revealed an association between vascular status and skeletal muscle health in healthy adults. This review points to the importance of screening for muscle health in adults with vascular dysfunction with a view to initiating early nutrition and exercise interventions to ameliorate functional decline over tim
Contrast‐enhanced ultrasound repeatability for the measurement of skeletal muscle microvascular blood flow
Contrast-enhanced ultrasound (CEUS) can be used to directly assess skeletal muscle perfusion. However, its repeatability over time has not yet been validated and therefore its use in longitudinal measures (i.e., exploring the impact of a chronic intervention or disease progression) is limited. This study aimed to determine the repeatability of CEUS for the measurement of skeletal muscle microvascular blood flow (MBF) at baseline and in response to exercise, across independent assessment sessions. Ten healthy volunteers (five female; 30 ± 6 years) had CEUS of the right vastus lateralis recorded in two separate sessions, 14 days apart. Measurements were taken at baseline, during an isometric leg extension and during recovery. Acoustic intensity data from a region of interest were plotted as a replenishment curve to obtain blood volume (A) and flow velocity (β) values from a one-phase association non-linear regression of mean tissue echogenicity. Linear regression and Bland–Altman analyses of A and β values were performed, with significance assumed as P < 0.05. Strong positive correlations were observed across sessions for all A and β values (both P < 0.0001). Bland–Altman analysis showed a bias (SD) of −0.013 ± 1.24 for A and −0.014 ± 0.31 for β. A bias of 0.201 ± 0.770 at baseline, 0.527 ± 1.29 during contraction and −0.203 ± 1.29 at recovery was observed for A, and −0.0328 ± 0.0853 (baseline), −0.0446 ± 0.206 (contraction) and 0.0382 ± 0.233 (recovery) for β. A strong agreement between CEUS MBF measures across independent sessions suggests it to be a repeatable method for assessing skeletal muscle perfusion over time, and therefore facilitates wider use in longitudinal studies
A 4-week, lifestyle-integrated, home-based exercise training programme elicits improvements in physical function and lean mass in older men and women: a pilot study
Background: Developing alternative exercise programmes that can alleviate certain barriers to exercise such as psychological, environmental or socio-economical barriers, but provide similar physiological benefits e.g. increases in muscle mass and strength, is of grave importance. This pilot study aimed to assess the efficacy of an unsupervised, 4-week, whole-body home-based exercise training (HBET) programme, incorporated into daily living activities, on skeletal muscle mass, power and strength.
Methods: Twelve healthy older volunteers (63±3 years, 7 men: 5 women, BMI: 29±1 kg/m²) carried out the 4-week “lifestyle-integrated” HBET of 8 exercises, 3x12 repetitions each, every day. Before and after HBET, a number of physical function tests were carried out: unilateral leg extension 1-RM (one- repetition maximum), MVC (maximal voluntary contraction) leg extension, lower leg muscle power (via Nottingham Power Rig), handgrip strength and SPPBT (short physical performance battery test). A D3-Creatine method was used for assessment of whole-body skeletal muscle mass, and ultrasound was used to measure the quadriceps cross-sectional area (CSA) and vastus lateralis muscle thickness.
Results: Four weeks HBET elicited significant (p<0.05) improvements in leg muscle power (276.7±38.5 vs. 323.4±43.4 W), maximal voluntary contraction (60°: 154.2±18.4 vs. 168.8±15.2 Nm, 90°: 152.1±10.5 vs. 159.1±11.4 Nm) and quadriceps CSA (57.5±5.4 vs. 59.0±5.3 cm2), with a trend for an increase in leg strength (1-RM: 45.7±5.9 vs. 49.6±6.0 kg, P=0.08). This was despite there being no significant differences in whole-body skeletal muscle mass, as assessed via D3-Creatine.
Conclusions: This study demonstrates that increases in multiple aspects of muscle function can be achieved in older adults with just 4-weeks of “lifestyle-integrated” HBET, with a cost-effective means. This training mode may prove to be a beneficial alternative for maintaining and/or improving muscle mass and function in older adults
Development of a new SonovueTM contrast-enhanced ultrasound approach reveals temporal and age-related features of muscle microvascular responses to feeding
Compromised limb blood flow in aging may contribute to the development of sarcopenia, frailty, and the metabolic syndrome. We developed a novel contrast-enhanced ultrasound technique using Sonovue™ to characterize muscle microvasculature responses to an oral feeding stimulus (15 g essential amino acids) in young (~20 years) and older (~70 years) men. Intensity-time replenishment curves were made via an ultrasound probe “fixed” over the quadriceps, with intermittent high mechanical index destruction of microbubbles within muscle vasculature. This permitted real-time measures of microvascular blood volume (MBV), microvascular flow velocity (MFV) and their product, microvascular blood flow (MBF). Leg blood flow (LBF) was measured by Doppler and insulin by enzyme-linked immunosorbent assay. Steady-state contrast concentrations needed for comparison between different physiological states were achieved <150 sec from commencing Sonovue™ infusion, and MFV and MBV measurements were completed <120 sec thereafter. Interindividual coefficients of variation in MBV and MFV were 35–40%, (N = 36). Younger men (N = 6) exhibited biphasic vascular responses to feeding with early increases in MBV (+36%, P < 0.008 45 min post feed) reflecting capillary recruitment, and late increases in MFV (+77%, P < 0.008) and MBF (+130%, P < 0.007 195 min post feed) reflecting more proximal vessel dilatation. Early MBV responses were synchronized with peak insulin but not increased LBF, while later changes in MFV and MBF occurred with insulin at post absorptive values but alongside increased LBF. All circulatory responses were absent in old men (N = 7). Thus, impaired postprandial circulation could impact age-related declines in muscle glucose disposal, protein anabolism, and muscle mass
An overview of technical considerations for Western blotting applications to physiological research
The applications of Western/immuno-blotting (WB) techniques have reached multiple layers of the scientific community and are now considered routine procedures in the field of physiology. This is none more so than in relation to skeletal muscle physiology (i.e. resolving the mechanisms underpinning adaptations to exercise). Indeed, the inclusion of WB data is now considered an essential aspect of many such physiological publications to provide mechanistic insight into regulatory processes. Despite this popularity, and due to the ubiquitous and relatively inexpensive availability of WB equipment, the quality of WB in publications and subsequent analysis and interpretation of the data can be variable, perhaps resulting in spurious conclusions. This may be due to poor laboratory technique and/or lack of comprehension of the critical steps involved in WB and what quality control procedures should be in place to ensure robust data generation. The present review aims to provide a detailed description and critique of WB procedures and technicalities, from sample collection through preparation, blotting and detection to analysis of the data collected. We aim to provide the reader with improved expertise to critically conduct, evaluate and troubleshoot the WB process, to produce reproducible and reliable blots
A statistical and biological response to an informatics appraisal of healthy aging gene signatures
Jacob and Speed did not identify even a single example of a ‘150-gene-set’ that was statistically significant at classifying Alzheimer’s disease (AD) samples, or age in independent studies. We attempt to clarify the various misunderstandings
- …