10 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Multi-ancestry genome-wide association meta-analysis of Parkinson?s disease

    Get PDF
    Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations

    The sequence and analysis of duplication-rich human chromosome 16

    Get PDF
    Human chromosome 16 features one of the highest levels of segmentally duplicated sequence among the human autosomes. We report here the 78,884,754 base pairs of finished chromosome 16 sequence, representing over 99.9% of its euchromatin. Manual annotation revealed 880 protein-coding genes confirmed by 1,670 aligned transcripts, 19 transfer RNA genes, 341 pseudogenes and three RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukaemia. Several large-scale structural polymorphisms spanning hundreds of kilobase pairs were identified and result in gene content differences among humans. Whereas the segmental duplications of chromosome 16 are enriched in the relatively gene-poor pericentromere of the p arm, some are involved in recent gene duplication and conversion events that are likely to have had an impact on the evolution of primates and human disease susceptibility.Joel Martin, Cliff Han, Laurie A. Gordon, Astrid Terry, Shyam Prabhakar, Xinwei She, Gary Xie, Uffe Hellsten, Yee Man Chan, Michael Altherr, Olivier Couronne, Andrea Aerts, Eva Bajorek, Stacey Black, Heather Blumer, Elbert Branscomb, Nancy C. Brown, William J. Bruno, Judith M. Buckingham, David F. Callen, Connie S. Campbell, Mary L. Campbell, Evelyn W. Campbell, Chenier Caoile, Jean F. Challacombe, Leslie A. Chasteen, Olga Chertkov, Han C. Chi, Mari Christensen, Lynn M. Clark, Judith D. Cohn, Mirian Denys, John C. Detter, Mark Dickson, Mira Dimitrijevic-Bussod, Julio Escobar, Joseph J. Fawcett, Dave Flowers, Dea Fotopulos, Tijana Glavina, Maria Gomez, Eidelyn Gonzales, David Goodstein, Lynne A. Goodwin, Deborah L. Grady, Igor Grigoriev, Matthew Groza, Nancy Hammon, Trevor Hawkins, Lauren Haydu, Carl E. Hildebrand, Wayne Huang, Sanjay Israni, Jamie Jett, Phillip B. Jewett, Kristen Kadner, Heather Kimball, Arthur Kobayashi, Marie-Claude Krawczyk, Tina Leyba, Jonathan L. Longmire, Frederick Lopez, Yunian Lou, Steve Lowry, Thom Ludeman, Chitra F. Manohar, Graham A. Mark, Kimberly L. McMurray, Linda J. Meincke, Jenna Morgan, Robert K. Moyzis, Mark O. Mundt, A. Christine Munk, Richard D. Nandkeshwar, Sam Pitluck, Martin Pollard Paul Predki, Beverly Parson-Quintana, Lucia Ramirez, Sam Rash, James Retterer, Darryl O. Ricke, Donna L. Robinson, Alex Rodriguez, Asaf Salamov, Elizabeth H. Saunders, Duncan Scott, Timothy Shough, Raymond L. Stallings, Malinda Stalvey, Robert D. Sutherland, Roxanne Tapia, Judith G. Tesmer, Nina Thayer, Linda S. Thompson, Hope Tice, David C. Torney, Mary Tran-Gyamfi, Ming Tsai, Levy E. Ulanovsky, Anna Ustaszewska, Nu Vo, P. Scott White, Albert L. Williams, Patricia L. Wills, Jung-Rung Wu, Kevin Wu, Joan Yang, Pieter DeJong, David Bruce, Norman A. Doggett, Larry Deaven, Jeremy Schmutz, Jane Grimwood, Paul Richardson, Daniel S. Rokhsar, Evan E. Eichler, Paul Gilna, Susan M. Lucas, Richard M. Myers, Edward M. Rubin and Len A. Pennacchi

    Physicochemical Properties of Cells and Their Effects on Intrinsically Disordered Proteins (IDPs)

    No full text
    corecore