385 research outputs found

    Temperature And Wind Velocity Oscillations Along a Gentle Slope During Sea-Breeze Events

    Get PDF
    The flow structure on a gentle slope at Vallon dOl in the northern suburbs of Marseille in southern France has been documented by means of surface wind and temperature measurements collected from 7 June to 14 July 2001 during the ESCOMPTE experiment. The analysis of the time series reveals temperature and wind speed oscillations during several nights (about 60--90 min oscillation period) and several days (about 120–180 min oscillation period) during the whole observing period. Oscillating katabatic winds have been reported in the literature from theoretical, experimental and numerical studies. In the present study, the dynamics of the observed oscillating katabatic winds are in good agreement with the theory.In contrast to katabatic winds, no daytime observations of oscillating anabatic upslope flows have ever been published to our knowledge, probably because of temperature inversion break-up that inhibits upslope winds. The present paper shows that cold air advection by a sea breeze generates a mesoscale horizontal temperature gradient, and hence baroclinicity in the atmosphere, which then allows low-frequency oscillations, similar to a katabatic flow. An expression for the oscillation period is derived that accounts for the contribution of the sea-breeze induced mesoscale horizontal temperature gradient. The theoretical prediction of the oscillation period is compared to the measurements, and good agreement is found. The statistical analysis of the wind flow at Vallon dOl shows a dominant north-easterly to easterly flow pattern for nighttime oscillations and a dominant south-westerly flow pattern for daytime oscillations. These results are consistent with published numerical simulation results that show that the air drains off the mountain along the maximum slope direction, which in the studied case is oriented south-west to north-east

    TbAGO1, an Argonaute protein required for RNA interference, is involved in mitosis and chromosome segregation in Trypanosoma brucei

    Get PDF
    BACKGROUND: RNA silencing processes are widespread in almost all eukaryotic organisms. They have various functions including genome protection, and the control of gene expression, development and heterochromatin formation. RNA interference (RNAi) is the post-transcriptional destruction of RNA, which is mediated by a ribonucleoprotein complex that contains, among several components, RNA helicases and Argonaute proteins. RNAi is functional in trypanosomes, protozoan parasites that separated very early from the main eukaryotic lineage and exhibit several intriguing features in terms of the control of gene expression. In this report, we investigated the functions of RNAi in Trypanosoma brucei. RESULTS: By searching through genome databases, novel Argonaute-like proteins were identified in several protozoa that belong to the kinetoplastid order, a group of organisms that diverged early from the main eukaryotic lineage. T. brucei possesses two Argonaute-like genes termed TbAGO1 and TbPWI1. Dual transient transfection assays suggest that TbAGO1, but not TbPWI1, is involved in RNAi. The entire coding region of TbAGO1 was deleted by double gene knockout. TbAGO1-/- cells turned out to be completely resistant to RNAi generated either by transfected double-stranded RNA or by expression of an inverted repeat. TbAGO1-/- cells were viable but showed a dramatically reduced growth rate. This was probably due to defects in mitosis and abnormal chromosome segregation as revealed by in situ analysis. The RNAi and growth phenotypes were complemented by the inducible expression of a GFP::TbAGO1 fusion protein that revealed the cytoplasmic location of the protein. CONCLUSIONS: The requirement of TbAGO1 for RNAi in trypanosomes demonstrates the evolutionary ancient involvement of Argonaute proteins in RNAi silencing processes. RNAi-deficient TbAGO1-/- cells showed numerous defects in chromosome segregation and mitotic spindle assembly. We propose a working hypothesis in which RNAi would be involved in heterochromatin formation at the centromere and therefore in chromosome segregation

    Studying Network Mechanisms Using Intracranial Stimulation in Epileptic Patients

    Get PDF
    Patients suffering from focal drug-resistant epilepsy who are explored using intracranial electrodes allow to obtain data of exceptional value for studying brain dynamics in correlation with pathophysiological and cognitive processes. Direct electrical stimulation (DES) of cortical regions and axonal tracts in those patients elicits a number of very specific perceptual or behavioral responses, but also abnormal responses due to specific configurations of epileptic networks. Here, we review how anatomo-functional brain connectivity and epilepsy network mechanisms can be assessed from DES responses measured in patients. After a brief summary of mechanisms of action of brain electrical stimulation, we recall the conceptual framework for interpreting DES results in the context of brain connectivity and review how DES can be used for the characterization of functional networks, the identification of the seizure onset zone, the study of brain plasticity mechanisms, and the anticipation of epileptic seizures. This pool of exceptional data may be underexploited by fundamental research on brain connectivity and leaves much to be learned

    Estimating nonparametric random utility models with an application to the value of time in heterogeneous populations

    Get PDF

    On the late northward propagation of the West African monsoon in summer 2006 in the region of Niger/Mali

    Get PDF
    International audienceThis paper investigates the fine-scale dynamical processes at the origin of the late northward migration of the monsoon flow in summer 2006 in the region of Niger and Mali (onset on 3 July 2006 compared to the climatological onset date, 24 June). Compared to a 28-year climatology, 2006 NCEP-2 reanalyses show evidence of an anomalous pattern during 10 days between 25 June and 3 July 2006, characterized by the African Easterly Jet (AEJ) blowing from the northeast along a narrow northeast/southwest band located over the Hoggar and Air mountains associated with an unusually strong northeasterly harmattan in the lee of the mountains. Using data collected during the African Monsoon Multidisciplinary Analysis (AMMA) experiment and mesoscale numerical simulations, this study shows evidence of interaction between the AEJ and the orography supported by the reduced gravity shallow water theory which explains the enhancement of the harmattan downstream of the Hoggar and Air mountains in summer 2006. The enhanced harmattan contributes to move southward the intertropical discontinuity (ITD) defined as the interface between the cool moist southwesterly monsoon flow and the warm dry harmattan. Finally, an interaction between the ITD and African Easterly waves contributes to propagate the ITD southward retreat about 1500 km to the west of the Hoggar and Air mountains
    corecore