104 research outputs found

    Using nature to understand nurture:Genetic associations show how parenting matters for children's education

    Get PDF
    Genetic associations show how parenting matters for children's education</jats:p

    Using genetics for social science

    Get PDF
    Social science genetics is concerned with understanding whether, how and why genetic differences between human beings are linked to differences in behaviours and socioeconomic outcomes. Our review discusses the goals, methods, challenges and implications of this research endeavour. We survey how the recent developments in genetics are beginning to provide social scientists with a powerful new toolbox they can use to better understand environmental effects, and we illustrate this with several substantive examples. Furthermore, we examine how medical research can benefit from genetic insights into social-scientific outcomes and vice versa. Finally, we discuss the ethical challenges of this work and clarify several common misunderstandings and misinterpretations of genetic research on individual differences

    Genetic instrumental variable regression: Explaining socioeconomic and health outcomes in nonexperimental data

    Get PDF
    Identifying causal effects in nonexperimental data is an enduring challenge. One proposed solution that recently gained popularity is the idea to use genes as instrumental variables [i.e., Mendelian randomization (MR)]. However, this approach is problematic because many variables of interest are genetically correlated, which implies the possibility that many genes could affect both the exposure and the outcome directly or via unobserved confounding factors. Thus, pleiotropic effects of genes are themselves a source of bias in nonexperimental data that would also undermine the ability of MR to correct for endogeneity bias from nongenetic sources. Here, we propose an alternative approach, genetic instrumental variable (GIV) regression, that provides estimates for the effect of an exposure on an outcome in the presence of pleiotropy. As a valuable byproduct, GIV regression also provides accurate estimates of the chip heritability of the outcome variable. GIV regression uses polygenic scores (PGSs) for the outcome of interest which can be constructed from genome-wide association study (GWAS) results. By splitting the GWAS sample for the outcome into nonoverlapping subsamples, we obtain multiple indicators of the outcome PGSs that can be used as instruments for each other and, in combination with other methods such as sibling fixed effects, can address endogeneity bias from both pleiotropy and the environment. In two empirical applications, we demonstrate that our approach produces reasonable estimates of the chip heritability of educational attainment (EA) and show that standard regression and MR provide upwardly biased estimates of the effect of body height on EA

    Are Bigger Brains Smarter? Evidence From a Large-Scale Preregistered Study

    Get PDF
    A positive relationship between brain volume and intelligence has been suspected since the 19th century, and empirical studies seem to support this hypothesis. However, this claim is controversial because of concerns about publication bias and the lack of systematic control for critical confounding factors (e.g., height, population structure). We conducted a preregistered study of the relationship between brain volume and cognitive performance using a new sample of adults from the United Kingdom that is about 70% larger than the combined samples of all previous investigations on this subject (N = 13,608). Our analyses systematically controlled for sex, age, height, socioeconomic status, and population structure, and our analyses were free of publication bias. We found a robust association between total brain volume and fluid intelligence (r =.19), which is consistent with previous findings in the literature after controlling for measurement quality of intelligence in our data. We also found a positive relationship between total brain volume and educational attainment (r =.12). These relationships were mainly driven by gray matter (rather than white matter or fluid volume), and effect sizes were similar for both sexes and across age groups

    Human brain anatomy reflects separable genetic and environmental components of socioeconomic status

    Full text link
    Socioeconomic status (SES) correlates with brain structure, a relation of interest given the long-observed relations of SES to cognitive abilities and health. Yet, major questions remain open, in particular, the pattern of causality that underlies this relation. In an unprecedently large study, here, we assess genetic and environmental contributions to SES differences in neuroanatomy. We first establish robust SES–gray matter relations across a number of brain regions, cortical and subcortical. These regional correlates are parsed into predominantly genetic factors and those potentially due to the environment. We show that genetic effects are stronger in some areas (prefrontal cortex, insula) than others. In areas showing less genetic effect (cerebellum, lateral temporal), environmental factors are likely to be influential. Our results imply a complex interplay of genetic and environmental factors that influence the SES-brain relation and may eventually provide insights relevant to policy

    Multivariate analysis reveals shared genetic architecture of brain morphology and human behavior.

    Get PDF
    Human variation in brain morphology and behavior are related and highly heritable. Yet, it is largely unknown to what extent specific features of brain morphology and behavior are genetically related. Here, we introduce a computationally efficient approach for multivariate genomic-relatedness-based restricted maximum likelihood (MGREML) to estimate the genetic correlation between a large number of phenotypes simultaneously. Using individual-level data (N = 20,190) from the UK Biobank, we provide estimates of the heritability of gray-matter volume in 74 regions of interest (ROIs) in the brain and we map genetic correlations between these ROIs and health-relevant behavioral outcomes, including intelligence. We find four genetically distinct clusters in the brain that are aligned with standard anatomical subdivision in neuroscience. Behavioral traits have distinct genetic correlations with brain morphology which suggests trait-specific relevance of ROIs. These empirical results illustrate how MGREML can be used to estimate internally consistent and high-dimensional genetic correlation matrices in large datasets

    Cohort profile: Genetic data in the German Socio-Economic Panel Innovation Sample (SOEP-G)

    Get PDF
    The German Socio-Economic Panel (SOEP) serves a global research community by providing representative annual longitudinal data of respondents living in private households in Germany. The dataset offers a valuable life course panorama, encompassing living conditions, socioeconomic status, familial connections, personality traits, values, preferences, health, and well-being. To amplify research opportunities further, we have extended the SOEP Innovation Sample (SOEP-IS) by collecting genetic data from 2,598 participants, yielding the first genotyped dataset for Germany based on a representative population sample (SOEP-G). The sample includes 107 full-sibling pairs, 501 parent-offspring pairs, and 152 triads, which overlap with the parent-offspring pairs. Leveraging the results from well-powered genome-wide association studies, we created a repository comprising 66 polygenic indices (PGIs) in the SOEP-G sample. We show that the PGIs for height, BMI, and educational attainment capture 22∼24%, 12∼13%, and 9% of the variance in the respective phenotypes. Using the PGIs for height and BMI, we demonstrate that the considerable increase in average height and the decrease in average BMI in more recent birth cohorts cannot be attributed to genetic shifts within the German population or to age effects alone. These findings suggest an important role of improved environmental conditions in driving these changes. Furthermore, we show that higher values in the PGIs for educational attainment and the highest math class are associated with better self-rated health, illustrating complex relationships between genetics, cognition, behavior, socio-economic status, and health. In summary, the SOEP-G data and the PGI repository we created provide a valuable resource for studying individual differences, inequalities, life-course development, health, and interactions between genetic predispositions and the environment

    Genetic variation associated with differential educational attainment in adults has anticipated associations with school performance in children

    Get PDF
    Genome-wide association study results have yielded evidence for the association of common genetic variants with crude measures of completed educational attainment in adults. Whilst informative, these results do not inform as to the mechanism of these effects or their presence at earlier ages and where educational performance is more routinely and more precisely assessed. Single nucleotide polymorphisms exhibiting genome-wide significant associations with adult educational attainment were combined to derive an unweighted allele score in 5,979 and 6,145 young participants from the Avon Longitudinal Study of Parents and Children with key stage 3 national curriculum test results (SATS results) available at age 13 to 14 years in English and mathematics respectively. Standardised (z-scored) results for English and mathematics showed an expected relationship with sex, with girls exhibiting an advantage over boys in English (0.433 SD (95%CI 0.395, 0.470), p<10-10) with more similar results (though in the opposite direction) in mathematics (0.042 SD (95%CI 0.004, 0.080), p = 0.030). Each additional adult educational attainment increasing allele was associated with 0.041 SD (95%CI 0.020, 0.063), p = 1.79×10-04 and 0.028 SD (95%CI 0.007, 0.050), p = 0.01 increases in standardised SATS score for English and mathematics respectively. Educational attainment is a complex multifactorial behavioural trait which has not had heritable contributions to it fully characterised. We were able to apply the results from a large study of adult educational attainment to a study of child exam performance marking events in the process of learning rather than realised adult end product. Our results support evidence for common, small genetic contributions to educational attainment, but also emphasise the likely lifecourse nature of this genetic effect. Results here also, by an alternative route, suggest that existing methods for child examination are able to recognise early life variation likely to be related to ultimate educational attainment
    • …
    corecore