6,094 research outputs found
Folding of a single domain protein entering the endoplasmic reticulum precedes disulfide formation
The relationship between protein synthesis, folding and disulfide formation within the endoplasmic reticulum (ER) is poorly understood. Previous studies have suggested pre-existing disulfide links are absolutely required to allow protein folding and, conversely, that protein folding occurs prior to disulfide formation. To address the question of what happens first within the ER; that is, protein folding or disulfide formation, we studied folding events at the early stages of polypeptide chain translocation into the mammalian ER using stalled translation intermediates. Our results demonstrate that polypeptide folding can occur without complete domain translocation. Protein disulfide isomerase (PDI) interacts with these early intermediates, but disulfide formation does not occur unless the entire sequence of the protein domain is translocated. This is the first evidence that folding of the polypeptide chain precedes disulfide formation within a cellular context and highlights key differences between protein folding in the ER and refolding of purified proteins
Longley Building: Reuse and Rehabilitation Feasibility Report
The southern, eastern, and northern façades (the principal façades) have a great amount of decorative masonry including granite, slate coursing, brownstone coursing, and brick veneer (Photo 2). All of these materials are in good condition, except for the brownstone, which is deteriorating in areas that are connected to a wrought iron balustrade. The surface of the brownstone is face-beded, and the corrosion of the iron in contact with the stone has caused oxide jacking. All of the masonry has environmental staining
Automated design analysis, assembly planning and motion study analysis using immersive virtual reality
Previous research work at Heriot-Watt University using immersive virtual reality (VR) for cable harness design showed that VR provided substantial productivity gains over traditional computer-aided design (CAD) systems. This follow-on work was aimed at understanding the degree to which aspects of this technology were contributed to these benefits and to determine if engineering design and planning processes could be analysed in detail by nonintrusively monitoring and logging engineering tasks. This involved using a CAD-equivalent VR system for cable harness routing design, harness assembly and installation planning that can be functionally evaluated using a set of creative design-tasks to measure the system and users' performance. A novel design task categorisation scheme was created and formalised which broke down the cable harness design process and associated activities. The system was also used to demonstrate the automatic generation of usable bulkhead connector, cable harness assembly and cable harness installation plans from non-intrusive user logging. Finally, the data generated from the user-logging allowed the automated activity categorisation of the user actions, automated generation of process flow diagrams and chronocyclegraphs
Hiding in the Shadows II: Collisional Dust as Exoplanet Markers
Observations of the youngest planets (1-10 Myr for a transitional disk)
will increase the accuracy of our planet formation models. Unfortunately,
observations of such planets are challenging and time-consuming to undertake
even in ideal circumstances. Therefore, we propose the determination of a set
of markers that can pre-select promising exoplanet-hosting candidate disks. To
this end, N-body simulations were conducted to investigate the effect of an
embedded Jupiter mass planet on the dynamics of the surrounding planetesimal
disk and the resulting creation of second generation collisional dust. We use a
new collision model that allows fragmentation and erosion of planetesimals, and
dust-sized fragments are simulated in a post process step including
non-gravitational forces due to stellar radiation and a gaseous protoplanetary
disk. Synthetic images from our numerical simulations show a bright double ring
at 850 m for a low eccentricity planet, whereas a high eccentricity planet
would produce a characteristic inner ring with asymmetries in the disk. In the
presence of first generation primordial dust these markers would be difficult
to detect far from the orbit of the embedded planet, but would be detectable
inside a gap of planetary origin in a transitional disk.Comment: Accepted for publication in Ap
Development and application of measurement techniques for evaluating localised magnetic properties in electrical steel
This paper reports the development of a measurement probe which couples local flux density measurements obtained using the needle probe method with the local magnetising field attained via a Hall effect sensor. This determines the variation in magnetic properties including power loss and permeability at increasing distances from the punched edge of 2.4% and 3.2% Si non-oriented electrical steel sample. Improvements in the characterisation of the magnetic properties of electrical steels would aid in optimising the efficiency in the design of electric machines
Development of the Orion Crew Module Static Aerodynamic Database
The Orion aerodynamic database provides force and moment coefficients given the velocity, attitude, configuration, etc. of the Crew Exploration Vehicle (CEV). The database is developed and maintained by the NASA CEV Aerosciences Project team from computational and experimental aerodynamic simulations. The database is used primarily by the Guidance, Navigation, and Control (GNC) team to design vehicle trajectories and assess flight performance. The initial hypersonic re-entry portion of the Crew Module (CM) database was developed in 2006. Updates incorporating additional data and improvements to the database formulation and uncertainty methodologies have been made since then. This paper details the process used to develop the CM database, including nominal values and uncertainties, for Mach numbers greater than 8 and angles of attack between 140deg and 180deg. The primary available data are more than 1000 viscous, reacting gas chemistry computational simulations using both the Laura and Dplr codes, over a range of Mach numbers from 2 to 37 and a range of angles of attack from 147deg to 172deg. Uncertainties were based on grid convergence, laminar-turbulent solution variations, combined altitude and code-to-code variations, and expected heatshield asymmetry. A radial basis function response surface tool, NEAR-RS, was used to fit the coefficient data smoothly in a velocity-angle-of-attack space. The resulting database is presented and includes some data comparisons and a discussion of the predicted variation of trim angle of attack and lift-to-drag ratio. The database provides a variation in trim angle of attack on the order of +/-2deg, and a range in lift-to-drag ratio of +/-0.035 for typical vehicle flight conditions
A conceptual model for researching the production and potential tourist consumption of popular media texts
This paper attempts to develop a conceptual model of the process of production
and consumption of popular media texts (PMTs) to investigate the relationships
between the production elements of PMTs and the ways in which particular
production values may appeal to potential tourists in diverse settings. The
proposed model presumes that there may be structurally causal relationships
between highlighted major elements of PMTs production and patterns of
consumption associated with audience involvement, subsequent audience
loyalty, and intention to visit the locations depicted in the programming in the
context of film-induced tourism. The conceptualised model of the process of
production and consumption of PMTs is hypothesised by reviewing previous
literature and empirical studies. This paper draws attention to trans-national and
interdisciplinary perspectives which will enable researchers to develop new ideas
and perspectives in exploring the complicated inter-communication processes
between PMTs from the production side with audiences/tourists as consumers,
and understanding the relationships and mediation between production and
consumption of PMTs and associated tourism
Application Program Interface for the Orion Aerodynamics Database
The Application Programming Interface (API) for the Crew Exploration Vehicle (CEV) Aerodynamic Database has been developed to provide the developers of software an easily implemented, fully self-contained method of accessing the CEV Aerodynamic Database for use in their analysis and simulation tools. The API is programmed in C and provides a series of functions to interact with the database, such as initialization, selecting various options, and calculating the aerodynamic data. No special functions (file read/write, table lookup) are required on the host system other than those included with a standard ANSI C installation. It reads one or more files of aero data tables. Previous releases of aerodynamic databases for space vehicles have only included data tables and a document of the algorithm and equations to combine them for the total aerodynamic forces and moments. This process required each software tool to have a unique implementation of the database code. Errors or omissions in the documentation, or errors in the implementation, led to a lengthy and burdensome process of having to debug each instance of the code. Additionally, input file formats differ for each space vehicle simulation tool, requiring the aero database tables to be reformatted to meet the tool s input file structure requirements. Finally, the capabilities for built-in table lookup routines vary for each simulation tool. Implementation of a new database may require an update to and verification of the table lookup routines. This may be required if the number of dimensions of a data table exceeds the capability of the simulation tools built-in lookup routines. A single software solution was created to provide an aerodynamics software model that could be integrated into other simulation and analysis tools. The highly complex Orion aerodynamics model can then be quickly included in a wide variety of tools. The API code is written in ANSI C for ease of portability to a wide variety of systems. The input data files are in standard formatted ASCII, also for improved portability. The API contains its own implementation of multidimensional table reading and lookup routines. The same aerodynamics input file can be used without modification on all implementations. The turnaround time from aerodynamics model release to a working implementation is significantly reduce
How entrepreneurs deal with ethical challenges : an application of the Business Ethics Synergy Star Technique
Entrepreneurs typically live with the ever present threat of business failure arising from limited financial resources and aggressive competition in the marketplace. Under these circumstances, conflicting priorities arise and the entrepreneur is thus faced with certain dilemmas. In seeking to resolve these, entrepreneurs must often rely on their own judgment to determine ‘‘what is right’’. There is thus a need for a technique to assist them decide on a course of action when no precedent or obvious solution exists. This research paper examines how entrepreneurs experience and deal with these dilemmas. The research is based on interviews with seven entrepreneurs in established service-oriented ventures, which gave rise to 26 dilemmas. These dilemmas were analyzed by making use of the Synergy Star technique, which is introduced here as a tool that is useful in defining any dilemma, isolating the ethical component, and resolving the dilemma in a way that is congruent with the entrepreneur’s personal world-view
- …
