1,975 research outputs found
Extracting 3D parametric curves from 2D images of helical objects
Helical objects occur in medicine, biology, cosmetics, nanotechnology, and engineering. Extracting a 3D parametric curve from a 2D image of a helical object has many practical applications, in particular being able to extract metrics such as tortuosity, frequency, and pitch. We present a method that is able to straighten the image object and derive a robust 3D helical curve from peaks in the object boundary. The algorithm has a small number of stable parameters that require little tuning, and the curve is validated against both synthetic and real-world data. The results show that the extracted 3D curve comes within close Hausdorff distance to the ground truth, and has near identical tortuosity for helical objects with a circular profile. Parameter insensitivity and robustness against high levels of image noise are demonstrated thoroughly and quantitatively
hnRNP K: An HDM2 Target and Transcriptional Coactivator of p53 in Response to DNA Damage
SummaryIn response to DNA damage, mammalian cells trigger the p53-dependent transcriptional induction of factors that regulate DNA repair, cell-cycle progression, or cell survival. Through differential proteomics, we identify heterogeneous nuclear ribonucleoprotein K (hnRNP K) as being rapidly induced by DNA damage in a manner that requires the DNA-damage signaling kinases ATM or ATR. Induction of hnRNP K ensues through the inhibition of its ubiquitin-dependent proteasomal degradation mediated by the ubiquitin E3 ligase HDM2/MDM2. Strikingly, hnRNP K depletion abrogates transcriptional induction of p53 target genes and causes defects in DNA-damage-induced cell-cycle-checkpoint arrests. Furthermore, in response to DNA damage, p53 and hnRNP K are recruited to the promoters of p53-responsive genes in a mutually dependent manner. These findings establish hnRNP K as a new HDM2 target and show that, by serving as a cofactor for p53, hnRNP K plays key roles in coordinating transcriptional responses to DNA damage
Redox proteomic analysis of the gastrocnemius muscle from adult and old mice.
The data provides information in support of the research article, "Differential Cysteine Labeling and Global Label-Free Proteomics Reveals an Altered Metabolic State in Skeletal Muscle Aging", Journal of Proteome Research, 2014, 13 (11), 2008-21 [1]. Raw data is available from ProteomeXchange [2] with identifier PDX001054. The proteome of gastrocnemius muscle from adult and old mice was analyzed by global label-free proteomics and the relative quantification of specific reduced and reversibly oxidized Cysteine (Cys) residues was performed using Skyline [3]. Briefly, reduced Cysteine (Cys) containing peptides was alkylated using N-ethylmalemide (d0-NEM). Samples were desalted and reversibly oxidized Cys residues were reduced using tris(2-carboxyethyl)phosphine (TCEP) and the newly formed reduced Cys residues were labeled with heavy NEM( d5-NEM). Label-free analysis of the global proteome of adult (n=5) and old (n=4) gastrocnemius muscles was performed using Peaks7â„¢ mass spectrometry data analysis software [4]. Relative quantification of Cys containing peptides that were identified as reduced (d(0) NEM labeled) and reversibly oxidized d(5)-NEM labeled was performed using the intensity of their precursor ions in Skyline. Results indicate that muscles from old mice show reduced redox flexibility particularly in proteins involved in the generation of precursor metabolites and energy metabolism, indicating a loss in the flexibility of the redox energy response
An automated cell-counting algorithm for fluorescently-stained cells in migration assays
A cell-counting algorithm, developed in Matlab®, was created to efficiently count migrated fluorescently-stained cells on membranes from migration assays. At each concentration of cells used (10,000, and 100,000 cells), images were acquired at 2.5 ×, 5 ×, and 10 × objective magnifications. Automated cell counts strongly correlated to manual counts (r2 = 0.99, P < 0.0001 for a total of 47 images), with no difference in the measurements between methods under all conditions. We conclude that our automated method is accurate, more efficient, and void of variability and potential observer bias normally associated with manual counting
Single-Channel Signal Separation and Deconvolution with Generative Adversarial Networks
Single-channel signal separation and deconvolution aims to separate and
deconvolve individual sources from a single-channel mixture and is a
challenging problem in which no prior knowledge of the mixing filters is
available. Both individual sources and mixing filters need to be estimated. In
addition, a mixture may contain non-stationary noise which is unseen in the
training set. We propose a synthesizing-decomposition (S-D) approach to solve
the single-channel separation and deconvolution problem. In synthesizing, a
generative model for sources is built using a generative adversarial network
(GAN). In decomposition, both mixing filters and sources are optimized to
minimize the reconstruction error of the mixture. The proposed S-D approach
achieves a peak-to-noise-ratio (PSNR) of 18.9 dB and 15.4 dB in image
inpainting and completion, outperforming a baseline convolutional neural
network PSNR of 15.3 dB and 12.2 dB, respectively and achieves a PSNR of 13.2
dB in source separation together with deconvolution, outperforming a
convolutive non-negative matrix factorization (NMF) baseline of 10.1 dB.Comment: 7 pages. Accepted by IJCAI 201
Monoclonal antibodies to a proenkephalin A fusion peptide synthesized in Escherichia coli recognize novel proenkephalin A precursor forms
Monoclonal antibodies have been generated to a chimeric peptide comprised of Escherichia coli beta-galactosidase fused to the amino acid sequence 69-207 of human preproenkephalin A. Two monoclonal antibodies, PE-1 and PE-2, were identified by their ability to recognize the same segment of proenkephalin A fused to the cII gene product of the E. coli bacteriophage lambda. The binding domains of PE-1 and PE-2 have been broadly located, with respect to the primary translation product, within the amino acid sequences 152-207 and 84-131, respectively. Immunoblot analysis of total bovine adrenomedullary chromaffin granule lysate reveals PE-1 and PE-2 immunoreactive forms of observed molecular mass 35, 33, 29, 24, 22, and 15 kDa, and an 18-kDa PE-1 immunoreactive form. Separation of granule membranes from their contents reveals differential membrane association of these high molecular weight polypeptides. There is preliminary evidence that PE-1 may be detecting a subset of polypeptides where shortening from the NH2 terminus has occurred. We postulate that the 35-kDa form represents the intact bovine enkephalin precursor of predicted molecular mass 27.3 kDa. This experimental approach should be generally applicable to the generation of antibodies which will recognize intact peptide precursors together with their post-translational cleavage products
Monoclonal antibodies to a proenkephalin A fusion peptide synthesized in Escherichia coli recognize novel proenkephalin A precursor forms
Monoclonal antibodies have been generated to a chimeric peptide comprised of Escherichia coli beta-galactosidase fused to the amino acid sequence 69-207 of human preproenkephalin A. Two monoclonal antibodies, PE-1 and PE-2, were identified by their ability to recognize the same segment of proenkephalin A fused to the cII gene product of the E. coli bacteriophage lambda. The binding domains of PE-1 and PE-2 have been broadly located, with respect to the primary translation product, within the amino acid sequences 152-207 and 84-131, respectively. Immunoblot analysis of total bovine adrenomedullary chromaffin granule lysate reveals PE-1 and PE-2 immunoreactive forms of observed molecular mass 35, 33, 29, 24, 22, and 15 kDa, and an 18-kDa PE-1 immunoreactive form. Separation of granule membranes from their contents reveals differential membrane association of these high molecular weight polypeptides. There is preliminary evidence that PE-1 may be detecting a subset of polypeptides where shortening from the NH2 terminus has occurred. We postulate that the 35-kDa form represents the intact bovine enkephalin precursor of predicted molecular mass 27.3 kDa. This experimental approach should be generally applicable to the generation of antibodies which will recognize intact peptide precursors together with their post-translational cleavage products
Ariel - Volume 4 Number 6
Editors
David A. Jacoby
Eugenia Miller
Tom Williams
Associate Editors
Paul Bialas
Terry Burt
Michael Leo
Gail Tenikat
Editor Emeritus and Business Manager
Richard J. Bonnano
Movie Editor
Robert Breckenridge
Staff
Richard Blutstein
Mary F. Buechler
J.D. Kanofsky
Rocket Weber
David Maye
- …