10,360 research outputs found
High pressure gas storage capacities. Example of a solution using filament windings
The use of epoxy resin fiber glass and economic factors affecting the choice of materials for gas storage are discussed. The physical nature of the filament windings are described together with the results obtained. It is demonstrated that a substantial reduction in mass and an enhanced level of safety can be assured at a competitive cost by storing gases in this way
A kinetic study of the photolysis of tris(2,4-pentanedionato)cobalt(III) and bis(2,4-pentanedionato)cobalt(II) in chloroform
Under 254nm irradiation in chloroform, Co(acac)3 (Hacac = 2,4-pentanedione) is converted to Co(acac)2 and then to CoCl2. The metal complex is the primary photoactive species in the photoreduction of Co(acac)3, but the photosubstitution of Co(acac)2 appears to occur primarily through absorption of light by the solvent, followed by a chain reaction in which chlorine atoms displace pentanedionyl radicals. The photosubstitution rate law is complex, and the apparent quantum yield (based on total light absorbed) varies with incident light intensity and Co(acac)2 concentration, reaching values as high as 16 under the conditions of this study. Referred only to the light absorbed by CHCL3, the highest quantum yield measured was 150. An observed partial inverse dependence of the photosubstitution rate on the initial concentration of Co(acac)2 is explained in terms of a mechanism in which the pentanedione product competes with Co(acac)2 for an intermediate
The Orientation of the Reconnection X-line
We propose a criterion for identifying the orientation of the X-line when two
regions of plasma with arbitrary densities, temperatures, and magnetic fields
undergo reconnection. The X-line points in the direction that maximizes the
(suitably-defined) Alfv\'en speed characterizing the reconnection outflow. For
many situations a good approximation is that the X-line bisects the angle
formed by the magnetic fields
Ion temperature anisotropy across a magnetotail reconnection jet
A significant fraction of the energy released by magnetotail reconnection appears to go into ion heating, but this heating is generally anisotropic. We examine ARTEMIS dual-spacecraft observations of a long-duration magnetotail exhaust generated by anti-parallel reconnection in conjunction with Particle-In-Cell simulations, showing spatial variations in the anisotropy across the outflow far (> 100di) downstream of the X-line. A consistent pattern is found in both the spacecraft data and the simulations: Whilst the total temperature across the exhaust is rather constant, near the boundaries Ti,|| dominates. The plasma is well-above the firehose threshold within patchy spatial regions at |BX| ∈ [0.1, 0.5]B0, suggesting that the drive for the instability is strong and the instability is too weak to relax the anisotropy. At the mid-plane (|BX|0.1 B0), Ti,⊥ > Ti,|| and ions undergo Speiser-like motion despite the large distance from the X-line
Solar generation and storage of O2 (a 1 delta g)
An investigation was performed of the technical steps required to design a solar powered oxygen-iodine laser. Singlet delta oxygen is formed upon transfer of energy from selected photoexcited dye molecules to ground state molecular oxygen and then is concentrated and stored as an endoperoxide by reaction with an aromatic hydrocarbon. The endoperoxide, when heated, releases singlet oxygen in high yield thus providing a regenerable source of laser fuel. Energy transfer from dye molecules to molecular oxygen was investigated. When dye molecules were adsorbed to polymer substrates it was observed that the dye became embedded in the polymer matrix. Porphin dyes were incorporated into films of 1,4-dimethyl-2-poly(vinylnaphthalene), 2PVN. An endoperoxide was formed when porphin-doped 2PVN was exposed to visible radiation. This demonstrates the possibility of generating singlet oxygen using solar energy and concentrating and storing it in one simple step. Transport of energy by exciton migration in polycrystalline dye films was also investigated
On the 3-D structure and dissipation of reconnection-driven flow-bursts
The structure of magnetic reconnection-driven outflows and their dissipation
are explored with large-scale, 3-D particle-in-cell (PIC) simulations. Outflow
jets resulting from 3-D reconnection with a finite length x-line form fronts as
they propagate into the downstream medium. A large pressure increase ahead of
this ``reconnection jet front'' (RJF), due to reflected and transmitted ions,
slows the front so that its velocity is well below the velocity of the ambient
ions in the core of the jet. As a result, the RJF slows and diverts the
high-speed flow into the direction perpendicular to the reconnection plane. The
consequence is that the RJF acts as a thermalization site for the ion bulk flow
and contributes significantly to the dissipation of magnetic energy during
reconnection even though the outflow jet is subsonic. This behavior has no
counterpart in 2-D reconnection. A simple analytic model predicts the front
velocity and the fraction of the ion bulk flow energy that is dissipated
- …