29 research outputs found

    PlantKViT: A Combination Model of Vision Transformer and KNN for Forest Plants Classification

    Get PDF
    The natural ecosystem incorporates thousands of plant species and distinguishing them is normally manual, complicated, and time-consuming. Since the task requires a large amount of expertise, identifying forest plant species relies on the work of a team of botanical experts. The emergence of Machine Learning, especially Deep Learning, has opened up a new approach to plant classification. However, the application of plant classification based on deep learning models remains limited. This paper proposed a model, named PlantKViT, combining Vision Transformer architecture and the KNN algorithm to identify forest plants. The proposed model provides high efficiency and convenience for adding new plant species. The study was experimented with using Resnet-152, ConvNeXt networks, and the PlantKViT model to classify forest plants. The training and evaluation were implemented on the dataset of DanangForestPlant, containing 10,527 images and 489 species of forest plants. The accuracy of the proposed PlantKViT model reached 93%, significantly improved compared to the ConvNeXt model at 89% and the Resnet-152 model at only 76%. The authors also successfully developed a website and 2 applications called ‘plant id’ and ‘Danangplant’ on the iOS and Android platforms respectively. The PlantKViT model shows the potential in forest plant identification not only in the conducted dataset but also worldwide. Future work should gear toward extending the dataset and enhance the accuracy and performance of forest plant identification

    Long short-term memory (LSTM) neural networks for short-term water level prediction in Mekong river estuaries

    Get PDF
    This study firstly adopts a state-of-the-art deep learning approach based on a Long Short-Term Memory (LSTM) neural network for predicting the hourly water level of Mekong estuaries in Vietnam. The LSTM models were developed from around 8,760 hourly data points within 2018 and were evaluated using the Nash-Sutcliffe efficiency coefficient (NSE), mean absolute error (MAE), and root mean square error (RMSE). The results showed that the NSE values for the training and testing steps were both above 0.98, which can be regarded as very good performance. Furthermore, the RMSE were between 0.09 and 0.11 m for the training and between 0.10 and 0.12 m for the testing, while MAE for the training ranged from 0.07 to 0.08 m and varied from 0.08 to 0.10 m for the testing. The LSTM networks appear to enable high precision and robustness in water level time series prediction. The outcomes of this research have crucial implications in river water level predictions, especially from the viewpoint of employing deep learning algorithms

    IDRC - UAF - PHI post-harvest technologies project

    Get PDF

    A hidden HIV epidemic among women in Vietnam

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The HIV epidemic in Vietnam is still concentrated among high risk populations, including IDU and FSW. The response of the government has focused on the recognized high risk populations, mainly young male drug users. This concentration on one high risk population may leave other populations under-protected or unprepared for the risk and the consequences of HIV infection. In particular, attention to women's risks of exposure and needs for care may not receive sufficient attention as long as the perception persists that the epidemic is predominantly among young males. Without more knowledge of the epidemic among women, policy makers and planners cannot ensure that programs will also serve women's needs.</p> <p>Methods</p> <p>More than 300 documents appearing in the period 1990 to 2005 were gathered and reviewed to build an understanding of HIV infection and related risk behaviors among women and of the changes over time that may suggest needed policy changes.</p> <p>Results</p> <p>It appears that the risk of HIV transmission among women in Vietnam has been underestimated; the reported data may represent as little as 16% of the real number. Although modeling predicted that there would be 98,500 cases of HIV-infected women in 2005, only 15,633 were accounted for in reports from the health system. That could mean that in 2005, up to 83,000 women infected with HIV have not been detected by the health care system, for a number of possible reasons. For both detection and prevention, these women can be divided into sub-groups with different risk characteristics. They can be infected by sharing needles and syringes with IDU partners, or by having unsafe sex with clients, husbands or lovers. However, most new infections among women can be traced to sexual relations with young male injecting drug users engaged in extramarital sex. Each of these groups may need different interventions to increase the detection rate and thus ensure that the women receive the care they need.</p> <p>Conclusion</p> <p>Women in Vietnam are increasingly at risk of HIV transmission but that risk is under-reported and under-recognized. The reasons are that women are not getting tested, are not aware of risks, do not protect themselves and are not being protected by men. Based on this information, policy-makers and planners can develop better prevention and care programs that not only address women's needs but also reduce further spread of the infection among the general population.</p

    Load frequency control of power systems with electric vehicles and diverse transmission links using distributed functional observers

    Full text link
    This paper presents a load frequency control scheme using electric vehicles (EVs) to help thermal turbine units to provide the stability fluctuated by load demands. First, a general framework for deriving a state-space model for general power system topologies is given. Then, a detailed model of a four-area power system incorporating a smart and renewable discharged EVs system is presented. The areas within the system are interconnected via a combination of alternating current/high voltage direct current links and thyristor controlled phase shifters. Based on some recent development on functional observers, novel distributed functional observers are designed, one at each local area, to implement any given global state feedback controller. The designed observers are of reduced order and dynamically decoupled from others in contrast to conventional centralized observer (CO)-based controllers. The proposed scheme can cope better against accidental failures than those CO-based controllers. Extensive simulations and comparisons are given to show the effectiveness of the proposed control scheme

    H∞ dynamic output feedback control of power systems with electric vehicles

    Full text link
    This paper presents a H&infin; dynamic output feedback control scheme for load frequency control (LFC) of interconnected power systems with multiple input timedelays. In this study, electric vehicles (EVs) are participated in the LFC to support reheated thermal power units to rapidly suppress load and frequency fluctuations. A mathematical model of an interconnected power system is first introduced. This model takes into consideration of the different time delays in control inputs; specifically the communication/information delays between the control center and the fleet of EVs. We then derive stabilization conditions in terms of feasible linear matrix inequalities (LMIs) for the proposed system and develop an effective algorithm to parameterize H&infin; controllers ensuring stability of the closed-loop system with H&infin; performance. Extensive simulations are given to show the effectiveness of the proposed control method

    Integration of electric vehicles for load frequency output feedback H ∞ control of smart grids

    Full text link
    This study considers a novel application of electric vehicles (EVs) to quickly help reheated thermal turbine units to provide the stability fluctuated by load demands. A mathematical model of a power system with EVs is first derived. This model contains the dynamic interactions of EVs and multiple network-induced time delays. Then, a dynamic output feedback H&infin; controller for load frequency control of power systems with multiple time delays in the control input is proposed. To address the multiple time delays issue, a refined Jensen-based inequality, which encompasses the Jensen inequality, is used to derive less conservative synthesis conditions in terms of tractable linear matrix inequalities. A procedure is given to parameterise an output feedback controller to guarantee stability and H&infin; performance of the closed-loop system. Extensive simulations are conducted to validate the proposed control method
    corecore