767 research outputs found
Correlations in Nuclear Arrhenius-Type Plots
Arrhenius-type plots for multifragmentation process, defined as the
transverse energy dependence of the single-fragment emission-probability,
-ln(p_{b}) vs 1/sqrt(E_{t}), have been studied by examining the relationship of
the parameters p_{b} and E_{t} to the intermediate-mass fragment multiplicity
. The linearity of these plots reflects the correlation of the fragment
multiplicity with the transverse energy. These plots may not provide thermal
scaling information about fragment production as previously suggested.Comment: 12 pages, Latex, 3 Postscript figures include
Surface Partition of Large Fragments
The surface partition of large fragments is derived analytically within a
simple statistical model by the Laplace-Fourier transformation method. In the
limit of small amplitude deformations, a suggested Hills and Dales Model
reproduces the leading term of the famous Fisher result for the surface entropy
with an accuracy of a few percent. The surface partition of finite fragments is
discussed as well.Comment: 4 pages, 1 figur
The complement: a solution to liquid drop finite size effects in phase transitions
The effects of the finite size of a liquid drop undergoing a phase transition
are described in terms of the complement, the largest (but still mesoscopic)
drop representing the liquid in equilibrium with the vapor. Vapor cluster
concentrations, pressure and density from fixed mean density lattice gas
(Ising) model calculations are explained in terms of the complement. Accounting
for this finite size effect is key to determining the infinite nuclear matter
phase diagram from experimental data.Comment: Four two column pages, four figures, two tables; accepted for
publication in PR
Z-dependent Barriers in Multifragmentation from Poissonian Reducibility and Thermal Scaling
We explore the natural limit of binomial reducibility in nuclear
multifragmentation by constructing excitation functions for intermediate mass
fragments (IMF) of a given element Z. The resulting multiplicity distributions
for each window of transverse energy are Poissonian. Thermal scaling is
observed in the linear Arrhenius plots made from the average multiplicity of
each element. ``Emission barriers'' are extracted from the slopes of the
Arrhenius plots and their possible origin is discussed.Comment: 15 pages including 4 .ps figures. Submitted to Phys. Rev. Letters.
Also available at http://csa5.lbl.gov/moretto
A statistical interpretation of the correlation between intermediate mass fragment multiplicity and transverse energy
Multifragment emission following Xe+Au collisions at 30, 40, 50 and 60 AMeV
has been studied with multidetector systems covering nearly 4-pi in solid
angle. The correlations of both the intermediate mass fragment and light
charged particle multiplicities with the transverse energy are explored. A
comparison is made with results from a similar system, Xe+Bi at 28 AMeV. The
experimental trends are compared to statistical model predictions.Comment: 7 pages, submitted to Phys. Rev.
- …