122 research outputs found

    Air quality and mental illness: Role of bioaerosols, causal mechanisms and research priorities

    Get PDF
    BACKGROUND: Poor air quality can both trigger and aggravate lung and heart conditions, as well as affecting child development. It can even lead to neurological and mental health problems. However, the precise mechanisms by which air pollution affect human health are not well understood. AIMS: To promote interdisciplinary dialogue and better research based on a critical summary of evidence on air quality and health, with an emphasis on mental health, and to do so with a special focus on bioaerosols as a common but neglected air constituent. METHOD: A rapid narrative review and interdisciplinary expert consultation, as is recommended for a complex and rapidly changing field of research. RESULTS: The research methods used to assess exposures and outcomes vary across different fields of study, resulting in a disconnect in bioaerosol and health research. We make recommendations to enhance the evidence base by standardising measures of exposure to both particulate matter in general and bioaerosols specifically. We present methods for assessing mental health and ideal designs. There is less research on bioaerosols, and we provide specific ways of measuring exposure to these. We suggest research designs for investigating causal mechanisms as important intermediate steps before undertaking larger-scale and definitive studies. CONCLUSIONS: We propose methods for exposure and outcome measurement, as well as optimal research designs to inform the development of standards for undertaking and reporting research and for future policy

    Evidence for proton acceleration up to TeV energies based on VERITAS and Fermi-LAT observations of the Cas A SNR

    Full text link
    We present a study of γ\gamma-ray emission from the core-collapse supernova remnant Cas~A in the energy range from 0.1GeV to 10TeV. We used 65 hours of VERITAS data to cover 200 GeV - 10 TeV, and 10.8 years of \textit{Fermi}-LAT data to cover 0.1-500 GeV. The spectral analysis of \textit{Fermi}-LAT data shows a significant spectral curvature around 1.3±0.4stat1.3 \pm 0.4_{stat} GeV that is consistent with the expected spectrum from pion decay. Above this energy, the joint spectrum from \textit{Fermi}-LAT and VERITAS deviates significantly from a simple power-law, and is best described by a power-law with spectral index of 2.17±0.02stat2.17\pm 0.02_{stat} with a cut-off energy of 2.3±0.5stat2.3 \pm 0.5_{stat} TeV. These results, along with radio, X-ray and γ\gamma-ray data, are interpreted in the context of leptonic and hadronic models. Assuming a one-zone model, we exclude a purely leptonic scenario and conclude that proton acceleration up to at least 6 TeV is required to explain the observed γ\gamma-ray spectrum. From modeling of the entire multi-wavelength spectrum, a minimum magnetic field inside the remnant of Bmin≈150 μGB_{\mathrm{min}}\approx150\,\mathrm{\mu G} is deduced.Comment: 33 pages, 9 Figures, 6 Table

    Search for Ultraheavy Dark Matter from Observations of Dwarf Spheroidal Galaxies with VERITAS

    Full text link
    Dark matter is a key piece of the current cosmological scenario, with weakly interacting massive particles (WIMPs) a leading dark matter candidate. WIMPs have not been detected in their conventional parameter space (100 GeV ≲Mχ≲\lesssim M_{\chi} \lesssim 100 TeV), a mass range accessible with current Imaging Atmospheric Cherenkov Telescopes. As ultraheavy dark matter (UHDM; Mχ≳M_{\chi} \gtrsim 100 TeV) has been suggested as an under-explored alternative to the WIMP paradigm, we search for an indirect dark matter annihilation signal in a higher mass range (up to 30 PeV) with the VERITAS gamma-ray observatory. With 216 hours of observations of four dwarf spheroidal galaxies, we perform an unbinned likelihood analysis. We find no evidence of a γ\gamma-ray signal from UHDM annihilation above the background fluctuation for any individual dwarf galaxy nor for a joint-fit analysis, and consequently constrain the velocity-weighted annihilation cross section of UHDM for dark matter particle masses between 1 TeV and 30 PeV. We additionally set constraints on the allowed radius of a composite UHDM particle.Comment: 10 pages, 7 figure

    VERITAS Discovery of VHE Emission from the Radio Galaxy 3C 264: A Multi-Wavelength Study

    Full text link
    The radio source 3C 264, hosted by the giant elliptical galaxy NGC 3862, was observed with VERITAS between February 2017 and May 2019. These deep observations resulted in the discovery of very-high-energy (VHE; E >100>100 GeV) γ\gamma-ray emission from this active galaxy. An analysis of ∼\sim57 hours of quality-selected live time yields a detection at the position of the source, corresponding to a statistical significance of 7.8 standard deviations above background. The observed VHE flux is variable on monthly time scales, with an elevated flux seen in 2018 observations. The VHE emission during this elevated state is well-characterized by a power-law spectrum with a photon index Γ=2.20±0.27\Gamma = 2.20 \pm 0.27 and flux F(>315>315 GeV) = (7.6±1.2stat±2.3syst)×10−137.6\pm 1.2_{\mathrm stat} \pm 2.3_{\mathrm syst})\times 10^{-13} cm−2^{-2} s−1^{-1}, or approximately 0.7% of the Crab Nebula flux above the same threshold. 3C 264 (z=0.0217z = 0.0217) is the most distant radio galaxy detected at VHE, and the elevated state is thought to be similar to that of the famously outbursting jet in M 87. Consequently, extensive contemporaneous multi-wavelength data were acquired in 2018 at the time of the VHE high state. An analysis of these data, including VLBA, VLA, HST, Chandra and Swift observations in addition to the VERITAS data, is presented, along with a discussion of the resulting spectral energy distribution.Comment: 19 pages, 11 figures, Accepted for publication in Astrophysical Journa

    Measurement of the extragalactic background light spectral energy distribution with VERITAS

    Full text link
    The extragalactic background light (EBL), a diffuse photon field in the optical and infrared range, is a record of radiative processes over the Universe's history. Spectral measurements of blazars at very high energies (>>100 GeV) enable the reconstruction of the spectral energy distribution (SED) of the EBL, as the blazar spectra are modified by redshift- and energy-dependent interactions of the gamma-ray photons with the EBL. The spectra of 14 VERITAS-detected blazars are included in a new measurement of the EBL SED that is independent of EBL SED models. The resulting SED covers an EBL wavelength range of 0.56--56 μ\mum, and is in good agreement with lower limits obtained by assuming that the EBL is entirely due to radiation from cataloged galaxies.Comment: Accepted for publication in The Astrophysical Journa

    An Archival Search for Neutron-Star Mergers in Gravitational Waves and Very-High-Energy Gamma Rays

    Full text link
    The recent discovery of electromagnetic signals in coincidence with neutron-star mergers has solidified the importance of multimessenger campaigns in studying the most energetic astrophysical events. Pioneering multimessenger observatories, such as LIGO/Virgo and IceCube, record many candidate signals below the detection significance threshold. These sub-threshold event candidates are promising targets for multimessenger studies, as the information provided by them may, when combined with contemporaneous gamma-ray observations, lead to significant detections. Here we describe a new method that uses such candidates to search for transient events using archival very-high-energy gamma-ray data from imaging atmospheric Cherenkov telescopes (IACTs). We demonstrate the application of this method to sub-threshold binary neutron star (BNS) merger candidates identified in Advanced LIGO's first observing run. We identify eight hours of archival VERITAS observations coincident with seven BNS merger candidates and search them for TeV emission. No gamma-ray emission is detected; we calculate upper limits on the integral flux and compare them to a short gamma-ray burst model. We anticipate this search method to serve as a starting point for IACT searches with future LIGO/Virgo data releases as well as in other sub-threshold studies for multimessenger transients, such as IceCube neutrinos. Furthermore, it can be deployed immediately with other current-generation IACTs, and has the potential for real-time use that places minimal burden on experimental operations. Lastly, this method may serve as a pilot for studies with the Cherenkov Telescope Array, which has the potential to observe even larger fields of view in its divergent pointing mode

    VERITAS Observations of the Galactic Center Region at Multi-TeV Gamma-Ray Energies

    Full text link
    The Galactic Center (GC) region hosts a variety of powerful astronomical sources and rare astrophysical processes that emit a large flux of non-thermal radiation. The inner 375 pc x 600 pc region, called the Central Molecular Zone, is home to the supermassive black hole Sagittarius A*, massive cloud complexes, and particle accelerators such as supernova remnants. We present the results of our improved analysis of the very-high-energy (VHE) gamma-ray emission above 2 TeV from the GC using 125 hours of data taken with the VERITAS imaging-atmospheric Cherenkov telescope between 2010 and 2018. The central source VER J1745-290, consistent with the position of Sagittarius A*, is detected at a significance of 38 standard deviations above the background level (38σ)(38\sigma), and we report its spectrum and light curve. Its differential spectrum is consistent with a power law with exponential cutoff, with a spectral index of 2.12−0.17+0.222.12^{+0.22}_{-0.17}, a flux normalization at 5.3 TeV of 1.27−0.23+0.22×10−131.27^{+0.22}_{-0.23}\times 10^{-13} TeV-1 cm-2 s-1, and cutoff energy of 10.0−2.0+4.010.0^{+4.0}_{-2.0} TeV. We also present results on the diffuse emission near the GC, obtained by combining data from multiple regions along the GC ridge which yield a cumulative significance of 9.5σ9.5\sigma. The diffuse GC ridge spectrum is best fit by a power law with a hard index of 2.19 ±\pm 0.20, showing no evidence of a cutoff up to 40 TeV. This strengthens the evidence for a potential accelerator of PeV cosmic rays being present in the GC. We also provide spectra of the other sources in our field of view with significant detections, composite supernova remnant G0.9+0.1 and HESS J1746-285.Comment: 19 pages, 8 figures, Accepted for publication in Astrophysical Journa
    • …
    corecore