14,533 research outputs found

    Imaging Transport Resonances in the Quantum Hall Effect

    Full text link
    We use a scanning capacitance probe to image transport in the quantum Hall system. Applying a DC bias voltage to the tip induces a ring-shaped incompressible strip (IS) in the 2D electron system (2DES) that moves with the tip. At certain tip positions, short-range disorder in the 2DES creates a quantum dot island in the IS. These islands enable resonant tunneling across the IS, enhancing its conductance by more than four orders of magnitude. The images provide a quantitative measure of disorder and suggest resonant tunneling as the primary mechanism for transport across ISs.Comment: 4 pages, 4 figures, submitted to PRL. For movies and additional infomation, see http://electron.mit.edu/scanning/; Added scale bars to images, revised discussion of figure 3, other minor change

    Observation of a cyclotron harmonic spike in microwave-induced resistances in ultraclean GaAs/AlGaAs quantum wells

    Full text link
    We report the observation of a colossal, narrow resistance peak that arises in ultraclean (mobility 3X10^7cm^2/Vs) GaAs/AlGaAs quantum wells (QWs) under millimeterwave irradiation and a weak magnetic field. Such a spike is superposed on the 2nd harmonic microwave-induced resistance oscillations (MIRO) but having an amplitude > 300% of the MIRO, and a typical FWHM ~50 mK, comparable with the Landau level width. Systematic studies show a correlation between the spike and a pronounced negative magnetoresistance in these QWs, suggesting a mechanism based on the interplay of strong scatterers and smooth disorder. Alternatively, the spike may be interpreted as a manifestation of quantum interference between the quadrupole resonance and the higher-order cyclotron transition in well-separated Landau levels.Comment: 4pages, 4figure

    Area dependence of interlayer tunneling in strongly correlated bilayer two-dimensional electron systems at ν_T = 1

    Get PDF
    The area and perimeter dependence of the Josephson-like interlayer tunneling signature of the coherent ν_T = 1 quantum Hall phase in bilayer two-dimensional electron systems is examined. Electrostatic top gates of various sizes and shapes are used to locally define distinct ν_T = 1 regions in the same sample. Near the phase boundary with the incoherent ν_T = 1 state at large layer separation, our results demonstrate that the tunneling conductance in the coherent phase is closely proportional to the total area of the tunneling region. This implies that tunneling at ν_T = 1 is a bulk phenomenon in this regime

    Current-induced nuclear-spin activation in a two-dimensional electron gas

    Full text link
    Electrically detected nuclear magnetic resonance was studied in detail in a two-dimensional electron gas as a function of current bias and temperature. We show that applying a relatively modest dc-current bias, I_dc ~ 0.5 microAmps, can induce a re-entrant and even enhanced nuclear spin signal compared with the signal obtained under similar thermal equilibrium conditions at zero current bias. Our observations suggest that dynamic nuclear spin polarization by small current flow is possible in a two-dimensional electron gas, allowing for easy manipulation of the nuclear spin by simple switching of a dc current.Comment: 5 pages, 3 fig

    A spin foam model for pure gauge theory coupled to quantum gravity

    Get PDF
    We propose a spin foam model for pure gauge fields coupled to Riemannian quantum gravity in four dimensions. The model is formulated for the triangulation of a four-manifold which is given merely combinatorially. The Riemannian Barrett--Crane model provides the gravity sector of our model and dynamically assigns geometric data to the given combinatorial triangulation. The gauge theory sector is a lattice gauge theory living on the same triangulation and obtains from the gravity sector the geometric information which is required to calculate the Yang--Mills action. The model is designed so that one obtains a continuum approximation of the gauge theory sector at an effective level, similarly to the continuum limit of lattice gauge theory, when the typical length scale of gravity is much smaller than the Yang--Mills scale.Comment: 18 pages, LaTeX, 1 figure, v2: details clarified, references adde

    Initial data for Einstein's equations with superposed gravitational waves

    Get PDF
    A method is presented to construct initial data for Einstein's equations as a superposition of a gravitational wave perturbation on an arbitrary stationary background spacetime. The method combines the conformal thin sandwich formalism with linear gravitational waves, and allows detailed control over characteristics of the superposed gravitational wave like shape, location and propagation direction. It is furthermore fully covariant with respect to spatial coordinate changes and allows for very large amplitude of the gravitational wave.Comment: Version accepted by PRD; added convergence plots, expanded discussion. 9 pages, 9 figure
    • …
    corecore