178 research outputs found
An ecophysiological approach to the microdistribution of meiobenthic Oligochaeta, II : Phallodrillus monospermathecus (Tubificidae) from boreal brackish-water shores in comparison to populations from subtropical beaches
Phallodrilus monospermathecus, a typical interstitial oligochaete from Baltic and North Sea beaches, shows a characteristic microdistribution preferring the moist layers usually slightly above ground water which are sufficiently supplied with water and oxygen, protected against wave action and devoid of hydrogen sulfide. - Ecophysiological experiments testing the resistance against temperature, salinity, alcalinity, and hypoxia proved the populations to be extremely euryecous tolerating single factors far beyond their natural range. However, combinations of adverse factors reduced the tolerable limits, especially those of salinity, considerably. - In boreal climate, the habitat fluctuations for many physiographical factors apparently lie well within the tolerable range of the populations. Hence, the distributional pattern of Ph. monospermathecus from Baltic and North Sea beaches must be ascribed mainly to long-term and preference reactions and probably also to biotic factors (food supply, competition), and is less definable by short-term tolerances. This is in contrast to conspecific populations from Bermuda beaches. Here, the subtropical climate shifts the maximal oscillations of physiographical parameters close to the tolerance limits which makes the field distribution of the population explicable already by short-term survival tests (GIERE, 1977a). - Considering the differing distributional limits of Ph. monospermathecus in their climatically diverse habitats, the nature ot ecophysiological adaptation in this ubiquitous meiobenthic species is discussed
Hofstadter-type energy spectra in lateral superlattices defined by periodic magnetic and electrostatic fields
We calculate the energy spectrum of an electron moving in a two-dimensional
lattice which is defined by an electric potential and an applied perpendicular
magnetic field modulated by a periodic surface magnetization. The spatial
direction of this magnetization introduces complex phases into the Fourier
coefficients of the magnetic field. We investigate the effect of the relative
phases between electric and magnetic modulation on band width and internal
structure of the Landau levels.Comment: 5 LaTeX pages with one gif figure to appear in Phys. Rev.
Probing the Shape of Quantum Dots with Magnetic Fields
A tool for the identification of the shape of quantum dots is developed. By
preparing a two-electron quantum dot, the response of the low-lying excited
states to a homogeneous magnetic field, i.e. their spin and parity
oscillations, is studied for a large variety of dot shapes. For any geometric
configuration of the confinement we encounter characteristic spin singlet -
triplet crossovers. The magnetization is shown to be a complementary tool for
probing the shape of the dot.Comment: 11 pages, 4 figure
Integral and fractional Quantum Hall Ising ferromagnets
We compare quantum Hall systems at filling factor 2 to those at filling
factors 2/3 and 2/5, corresponding to the exact filling of two lowest electron
or composite fermion (CF) Landau levels. The two fractional states are examples
of CF liquids with spin dynamics. There is a close analogy between the
ferromagnetic (spin polarization P=1) and paramagnetic (P=0) incompressible
ground states that occur in all three systems in the limits of large and small
Zeeman spin splitting. However, the excitation spectra are different. At
filling factor 2, we find spin domains at half-polarization (P=1/2), while
antiferromagnetic order seems most favorable in the CF systems. The transition
between P=0 and 1, as seen when e.g. the magnetic field is tilted, is also
studied by exact diagonalization in toroidal and spherical geometries. The
essential role of an effective CF-CF interaction is discussed, and the
experimentally observed incompresible half-polarized state is found in some
models
Universal Equilibrium Currents in the Quantum Hall Fluid
The equilibrium current distribution in a quantum Hall fluid that is
subjected to a slowly varying confining potential is shown to generally consist
of strips or channels of current, which alternate in direction, and which have
universal integrated strengths. A measurement of these currents would yield
direct independent measurements of the proper quasiparticle and quasihole
energies in the fractional quantum Hall states.Comment: 4 pages, Revte
Magnetic Field Dependence of the Level Spacing of a Small Electron Droplet
The temperature dependence of conductance resonances is used to measure the
evolution with the magnetic field of the average level spacing
of a droplet containing electrons created by lateral confinement of a
two-dimensional electron gas in GaAs. becomes very small (eV) near two critical magnetic fields at which the symmetry of the
droplet changes and these decreases of are predicted by
Hartree-Fock (HF) for charge excitations. Between the two critical fields,
however, the largest measured eV is an order of
magnitude smaller than predicted by HF but comparable to the Zeeman splitting
at this field, which suggests that the spin degrees of freedom are important.
PACS: 73.20.Dx, 73.20.MfComment: 11 pages of text in RevTeX, 4 figures in Postscript (files in the
form of uuencoded compressed tar file
Quantum-dot lithium in zero magnetic field: Electronic properties, thermodynamics, and a liquid-solid transition in the ground state
Energy spectra, electron densities, pair correlation functions and heat
capacity of a quantum-dot lithium in zero external magnetic field (a system of
three interacting two-dimensional electrons in a parabolic confinement
potential) are studied using the exact diagonalization approach. A particular
attention is given to a Fermi-liquid -- Wigner-solid transition in the ground
state of the dot, induced by the intra-dot Coulomb interaction.Comment: 12 pages, incl. 16 figure
Density functional theory of spin-polarized disordered quantum dots
Using density functional theory, we investigate fluctuations of the ground
state energy of spin-polarized, disordered quantum dots in the metallic regime.
To compare to experiment, we evaluate the distribution of addition energies and
find a convolution of the Wigner-Dyson distribution, expected for noniteracting
electrons, with a narrower Gaussian distribution due to interactions. The tird
moment of the total distribution is independent of interactions, and so is
predicted to decrease by a factor of 0.405 upon application of a magnetic field
which transforms from the Gaussian orthogonal to the Gaussian unitary ensemble.Comment: 13 pages, 2 figure
Composite Fermion Description of Correlated Electrons in Quantum Dots: Low Zeeman Energy Limit
We study the applicability of composite fermion theory to electrons in
two-dimensional parabolically-confined quantum dots in a strong perpendicular
magnetic field in the limit of low Zeeman energy. The non-interacting composite
fermion spectrum correctly specifies the primary features of this system.
Additional features are relatively small, indicating that the residual
interaction between the composite fermions is weak. \footnote{Published in
Phys. Rev. B {\bf 52}, 2798 (1995).}Comment: 15 pages, 7 postscript figure
Spin Exciton in quantum dot with spin orbit coupling in high magnetic field
Coulomb interactions of few () electrons confined in a disk shaped
quantum dot, with a large magnetic field applied in the z-direction
(orthogonal to the dot), produce a fully spin polarized ground state. We
numerically study the splitting of the levels corresponding to the multiplet of
total spin (each labeled by a different total angular momentum )
in presence of an electric field parallel to , coupled to by a
Rashba term. We find that the first excited state is a spin exciton with a
reversed spin at the origin. This is reminiscent of the Quantum Hall
Ferromagnet at filling one which has the skyrmion-like state as its first
excited state. The spin exciton level can be tuned with the electric field and
infrared radiation can provide energy and angular momentum to excite it.Comment: 9 pages, 9 figures. submitted to Phys.Rev.
- …