652 research outputs found
Structural and Functional Neuroimaging of Visual Hallucinations in Lewy Body Disease: A Systematic Literature Review.
Patients with Lewy body disease (LBD) frequently experience visual hallucinations (VH), well-formed images perceived without the presence of real stimuli. The structural and functional brain mechanisms underlying VH in LBD are still unclear. The present review summarises the current literature on the neural correlates of VH in LBD, namely Parkinson's disease (PD), and dementia with Lewy bodies (DLB). Following a systematic literature search, 56 neuroimaging studies of VH in PD and DLB were critically reviewed and evaluated for quality assessment. The main structural neuroimaging results on VH in LBD revealed grey matter loss in frontal areas in patients with dementia, and parietal and occipito-temporal regions in PD without dementia. Parietal and temporal hypometabolism was also reported in hallucinating PD patients. Disrupted functional connectivity was detected especially in the default mode network and fronto-parietal regions. However, evidence on structural and functional connectivity is still limited and requires further investigation. The current literature is in line with integrative models of VH suggesting a role of attention and perception deficits in the development of VH. However, despite the close relationship between VH and cognitive impairment, its associations with brain structure and function have been explored only by a limited number of studies
Frontal and subcortical contribution to visual hallucinations in dementia with Lewy bodies and Parkinson’s disease
Objectives. Visual hallucinations (VH) are common in Lewy body disease (LBD), and have been associated with cognitive and structural brain alterations. Evidence so far concerns mainly Parkinson’s disease (PD), but little is known about symptom-specific pathophysiological mechanisms across the LBD spectrum, especially related to the presence of dementia. The aim of the present pilot study was to investigate the neuroanatomical, and neuropsychological characteristics related to VH in two forms of LBD, namely dementia with Lewy bodies (DLB) and PD without dementia.
Methods. Whole brain voxel-based morphometry (VBM) analyses on 3D MRI acquired structural brain scans, and neuropsychological testing were performed on 28 clinically diagnosed DLB (11 with VH, 17 NVH), and 24 PD (9 with VH, and 15 NVH) patients. In order to assess differences in grey matter (GM) regional volumes, and cognitive performance, hallucinating patients for each group were compared with corresponding non-hallucinating ones.
Results. DLB patients with VH presented significantly worse visual attention deficits compared to those without, which persisted even when controlling for visual perception. Whole brain VBM analysis revealed decreased GM volume in DLB with VH in the right superior and medial frontal gyri, putamen, caudate nucleus and insula. Subcortical regional volumes were also significantly associated with visual attention performance. Hallucinating PD patients, instead, presented more severe executive dysfunction, but VBM showed no volumetric differences between the two PD subgroups. Post hoc region of interest analyses revealed striatal GM loss in PD with VH.
Conclusion. Frontal and striatal GM atrophy may contribute to the emergence of VH in DLB, which may be fostered by the more severe attention deficits. Striatal GM loss and executive dysfunction, instead, appeared to underlie VH in PD without dementia
Giant g factor tuning of long-lived electron spins in Ge
Control of electron spin coherence via external fields is fundamental in
spintronics. Its implementation demands a host material that accommodates the
highly desirable but contrasting requirements of spin robustness to relaxation
mechanisms and sizeable coupling between spin and orbital motion of charge
carriers. Here we focus on Ge, which, by matching those criteria, is rapidly
emerging as a prominent candidate for shuttling spin quantum bits in the mature
framework of Si electronics. So far, however, the intrinsic spin-dependent
phenomena of free electrons in conventional Ge/Si heterojunctions have proved
to be elusive because of epitaxy constraints and an unfavourable band
alignment. We overcome such fundamental limitations by investigating a two
dimensional electron gas (2DEG) confined in quantum wells of pure Ge grown on
SiGe-buffered Si substrates. These epitaxial systems demonstrate exceptionally
long spin relaxation and coherence times, eventually unveiling the potential of
Ge in bridging the gap between spintronic concepts and semiconductor device
physics. In particular, by tuning spin-orbit interaction via quantum
confinement we demonstrate that the electron Land\'e g factor and its
anisotropy can be engineered in our scalable and CMOS-compatible architectures
over a range previously inaccessible for Si spintronics
Spin-dependent direct gap emission in tensile-strained Ge films on Si substrates
The circular polarization of direct gap emission of Ge is studied in
optically-excited tensile-strained Ge-on-Si heterostructures as a function of
doping and temperature. Owing to the spin-dependent optical selection rules,
the radiative recombinations involving strain-split light (cG-LH) and heavy
hole (cG-HH) bands are unambiguously resolved. The fundamental cG-LH transition
is found to have a low temperature circular polarization degree of about 85%
despite an off-resonance excitation of more than 300 meV. By photoluminescence
(PL) measurements and tight binding calculations we show that this
exceptionally high value is due to the peculiar energy dependence of the
optically-induced electron spin population. Finally, our observation of the
direct gap doublet clarifies that the light hole contribution, previously
considered to be negligible, can dominate the room temperature PL even at low
tensile strain values of about 0.2%
Genetic effects of static magnetic fields. Body size increase and lethal mutations induced in populations of Drosophila melanogaster after chronic exposure
International audienc
The tumor suppressor gene fat modulates the EGFR-mediated proliferation control in the imaginal tissues of Drosophila melanogaster
Molecules involved in cell adhesion can regulate both early signal transduction events, triggered by soluble factors, and downstream events involved in cell cycle progression. Correct integration of these signals allows appropriate cellular growth, differentiation and ultimately tissue morphogenesis, but incorrect interpretation contributes to pathologies such as tumor growth. The Fat cadherin is a tumor suppressor protein required in Drosophila for epithelial morphogenesis, proliferation control and epithelial planar polarization, and its loss results in a hyperplastic growth of imaginal tissues. While several molecular events have been characterized through which fat participates in the establishment of the epithelial planar polarity, little is known about mechanisms underlying fat-mediated control of cell proliferation. Here we provide evidence that fat specifically cooperates with the epidermal growth factor receptor (EGFR) pathway in controlling cell proliferation in developing imaginal epithelia. Hyperplastic larval and adult fat structures indeed undergo an amazing, synergistic enlargement following to EGFR oversignalling. We further show that such a strong functional interaction occurs downstream of MAPK activation through the transcriptional regulation of genes involved in the EGFR nuclear signalling. Considering that fat mutation shows di per se a hyperplastic phenotype, we suggest a model in which fat acts in parallel to EGFR pathway in transducing different cell communication signals: furthermore its function is requested downstream of MAPK for a correct rendering of the growth signals converging to the epidermal growth factor receptor. (C) 2004 Elsevier Ireland Ltd. All rights reserved
Optical spin injection and spin lifetime in Ge heterostructures
We demonstrate optical orientation in Ge/SiGe quantum wells and study their
spin properties. The ultrafast electron transfer from the center of the
Brillouin zone to its edge allows us to achieve high spin-polarization
efficiencies and to resolve the spin dynamics of holes and electrons. The
circular polarization degree of the direct-gap photoluminescence exceeds the
theoretical bulk limit, yielding ~37% and ~85% for transitions with heavy and
light holes states, respectively. The spin lifetime of holes at the top of the
valence band is found to be ~0.5 ps and it is governed by transitions between
heavy and light hole states. Electrons at the bottom of the conduction band, on
the other hand, have a spin lifetime that exceeds 5 ns below 150 K. Theoretical
analysis of the electrons spin relaxation indicates that phonon-induced
intervalley scattering dictates the spin lifetime.Comment: 5 pages, 3 figure
Challenges and Solutions to the Measurement of Neurocognitive Mechanisms in Developmental Settings
Identifying early neurocognitive mechanisms that confer risk for mental health problems is one important avenue as we seek to develop successful early interventions. Currently, however, we have limited understanding of the neurocognitive mechanisms involved in shaping mental health trajectories from childhood through young adulthood, and this constrains our ability to develop effective clinical interventions. In particular, there is an urgent need to develop more sensitive, reliable, and scalable measures of individual differences for use in developmental settings. In this review, we outline methodological shortcomings that explain why widely used task-based measures of neurocognition currently tell us little about mental health risk. We discuss specific challenges that arise when studying neurocognitive mechanisms in developmental settings, and we share suggestions for overcoming them. We also propose a novel experimental approach—which we refer to as “cognitive microscopy”—that involves adaptive design optimization, temporally sensitive task administration, and multilevel modeling. This approach addresses some of the methodological shortcomings outlined above and provides measures of stability, variability, and developmental change in neurocognitive mechanisms within a multivariate framework
- …