1,655 research outputs found

    Activation of Serine One-Carbon Metabolism by Calcineurin A beta 1 Reduces Myocardial Hypertrophy and Improves Ventricular Function

    Get PDF
    Background In response to pressure overload, the heart develops ventricular hypertrophy that progressively decompensates and leads to heart failure. This pathological hypertrophy is mediated, among others, by the phosphatase calcineurin and is characterized by metabolic changes that impair energy production by mitochondria. Objectives The authors aimed to determine the role of the calcineurin splicing variant CnAβ1 in the context of cardiac hypertrophy and its mechanism of action. Methods Transgenic mice overexpressing CnAβ1 specifically in cardiomyocytes and mice lacking the unique C-terminal domain in CnAβ1 (CnAβ1Δi12 mice) were used. Pressure overload hypertrophy was induced by transaortic constriction. Cardiac function was measured by echocardiography. Mice were characterized using various molecular analyses. Results In contrast to other calcineurin isoforms, the authors show here that cardiac-specific overexpression of CnAβ1 in transgenic mice reduces cardiac hypertrophy and improves cardiac function. This effect is mediated by activation of serine and one-carbon metabolism, and the production of antioxidant mediators that prevent mitochondrial protein oxidation and preserve ATP production. The induction of enzymes involved in this metabolic pathway by CnAβ1 is dependent on mTOR activity. Inhibition of serine and one-carbon metabolism blocks the beneficial effects of CnAβ1. CnAβ1Δi12 mice show increased cardiac hypertrophy and declined contractility. Conclusions The metabolic reprogramming induced by CnAβ1 redefines the role of calcineurin in the heart and shows for the first time that activation of the serine and one-carbon pathway has beneficial effects on cardiac hypertrophy and function, paving the way for new therapeutic approaches

    Thermal stability and diffusion in gadolinium silicate gate dielectric films

    Get PDF
    Gadolinium silicate films on Si(100) annealed in oxygen and vacuum at temperatures up to 800\u200a\ub0C were analyzed by Rutherford backscattering and narrow resonance nuclear profiling. Oxygen diffused into the film eliminating oxygen vacancies, but Si diffusion, previously observed in Al and Y oxides and in La and Zr silicate films, was absent. Higher-temperature annealing in oxygen resulted in the formation of an interfacial layer observable in high-resolution electron micrographs. Gd0.23Si0.14O0.63 films crystallize at temperatures between 1000 and 1050\u200a\ub0C. These observations combined with recent electrical measurements show that gadolinium silicate films may be a good candidate for the replacement of SiO2 in deep submicron metal\u2013oxide\u2013semiconductor gates.NRC publication: Ye

    A Lagrangian Identification of the Main Sources of Moisture Affecting Northeastern Brazil during Its Pre-Rainy and Rainy Seasons

    Get PDF
    This work examines the sources of moisture affecting the semi-arid Brazilian Northeast (NEB) during its pre-rainy and rainy season (JFMAM) through a Lagrangian diagnosis method. The FLEXPART model identifies the humidity contributions to the moisture budget over a region through the continuous computation of changes in the specific humidity along back or forward trajectories up to 10 days period. The numerical experiments were done for the period that spans between 2000 and 2004 and results were aggregated on a monthly basis. Results show that besides a minor local recycling component, the vast majority of moisture reaching NEB area is originated in the south Atlantic basin and that the nearby wet Amazon basin bears almost no impact. Moreover, although the maximum precipitation in the “Poligono das Secas” region (PS) occurs in March and the maximum precipitation associated with air parcels emanating from the South Atlantic towards PS is observed along January to March, the highest moisture contribution from this oceanic region occurs slightly later (April). A dynamical analysis suggests that the maximum precipitation observed in the PS sector does not coincide with the maximum moisture supply probably due to the combined effect of the Walker and Hadley cells in inhibiting the rising motions over the region in the months following April

    First Solar Orbiter observation of the Alfvénic slow wind and identification of its solar source

    Get PDF
    Context: Turbulence dominated by large amplitude nonlinear Alfvén-like fluctuations mainly propagating away from the Sun is ubiquitous in high speed solar wind streams. Recent studies have shown that also slow wind streams may show strong Alfvénic signatures, especially in the inner heliosphere. Aims: The present study focuses on the characterisation of an Alfvénic slow solar wind interval observed by Solar Orbiter on July 14-18, 2020 at a heliocentric distance of 0.64 AU. Methods: Our analysis is based on plasma moments and magnetic field measurements from the Solar Wind Analyser (SWA) and Magnetometer (MAG) instruments, respectively. We compare the behaviour of different parameters to characterise the stream in terms of the Alfvénic content and magnetic properties. We perform also a spectral analysis to highlight spectral features and waves signature using power spectral density and magnetic helicity spectrograms, respectively. Moreover, we reconstruct the Solar Orbiter magnetic connectivity to the solar sources via both a ballistic and a Potential Field Source Surface (PFSS) model. Results: The Alfvénic slow wind stream described in this paper resembles in many respects a fast wind stream. Indeed, at large scales, the time series of the speed profile shows a compression region, a main portion of the stream and a rarefaction region, characterised by different features. Moreover, before the rarefaction region, we pinpoint several structures at different scales recalling the spaghetti-like flux-tube texture of the interplanetary magnetic field. Finally, we identify the connections between Solar Orbiter in situ measurements, tracing them down to coronal streamer and pseudostreamer configurations. Conclusions. The characterisation of the Alfvénic slow wind stream observed by Solar Orbiter and the identification of its solar source are extremely important aspects to understand possible future observations of the same solar wind regime, especially as solar activity is increasing toward a maximum, where a higher incidence of this solar wind regime is expected

    Growth of TiO2 nanotube arrays with simultaneous Au nanoparticles impregnation: photocatalysts for hydrogen production

    Full text link
    Um novo método para a fabricação de nanotubos (NTs) de TiO2 organizados e impregnados com nanopartículas (NPs) de ouro foi desenvolvido, e as propriedades estruturais, morfológicas e ópticas dos NTs obtidos foram investigadas. Os arranjos de NTs de TiO2 foram crescidos pela oxidação anódica de Ti metálico utilizando soluções eletrolíticas contendo íons fluoreto e NPs de Au. As estruturas resultantes foram caracterizadas por espectrometria de retroespalhamento Rutherford (RBS), difratometria de raios X com incidência rasante (GIXRD), microscopias eletrônicas de transmissão (TEM) e de varredura (SEM) e espectroscopia UV-Vis. Tanto os arranjos de NTs sem Au quanto os impregnados com Au mostraram atividade fotocatalítica boa e estável na geração de hidrogênio a partir de misturas água/metanol. Os nanotubos de TiO2 contendo Au foram mais ativos na fotogeração de hidrogênio do que os NTs de TiO2 sem Au.A novel method for the fabrication of TiO2 nanotubes (NTs) impregnated with gold nanoparticles (NPs) is reported. TiO2 NT arrays were grown by anodic oxidation of Ti metal using fluoride electrolytes containing Au NPs. Resulting structures were characterized by Rutherford backscattering spectrometry (RBS), grazing incidence X-ray diffractometry (GIXRD), transmission and scanning electron microscopy (SEM and TEM) and UV-Vis spectroscopy. Au-free and Au-impregnated TiO2 NT arrays showed good and stable photocatalytic activity for hydrogen generation from water/methanol solutions. Au-containing TiO2 NTs presented higher hydrogen photogeneration activity than Au-free TiO2 NTs
    corecore