1,006 research outputs found

    RNA content in motor and sensory neurons and surrounding neuroglia of mouse spinal cord under conditions of hypodynamia and following normalization

    Get PDF
    The differences in the dynamics of reparative processes in RNA metabolism within the neuron-neuroglia unit after the cessation of hyper- and hypodynamia is dicussed. The role of neuroglia is stressed in compensatory, reparative and trophic processes in the nervous system as well as the possibility in an adaptation at the cellular level

    RNA content in motor and sensory neurons and surrounding neuroglia of mouse spinal cord under conditions of hypodynamia and following normalization

    Get PDF
    Male white mice were subjected to two and three week hypodynamia and then decapitated. Cytoplasmic RNA content per cell was measured by means of ultraviolet cytospectrometry. Changes in RNA content are shown, and the dynamics of the reparative processes of cells are discussed

    Sum-of-squares lower bounds for planted clique

    Full text link
    Finding cliques in random graphs and the closely related "planted" clique variant, where a clique of size k is planted in a random G(n, 1/2) graph, have been the focus of substantial study in algorithm design. Despite much effort, the best known polynomial-time algorithms only solve the problem for k ~ sqrt(n). In this paper we study the complexity of the planted clique problem under algorithms from the Sum-of-squares hierarchy. We prove the first average case lower bound for this model: for almost all graphs in G(n,1/2), r rounds of the SOS hierarchy cannot find a planted k-clique unless k > n^{1/2r} (up to logarithmic factors). Thus, for any constant number of rounds planted cliques of size n^{o(1)} cannot be found by this powerful class of algorithms. This is shown via an integrability gap for the natural formulation of maximum clique problem on random graphs for SOS and Lasserre hierarchies, which in turn follow from degree lower bounds for the Positivestellensatz proof system. We follow the usual recipe for such proofs. First, we introduce a natural "dual certificate" (also known as a "vector-solution" or "pseudo-expectation") for the given system of polynomial equations representing the problem for every fixed input graph. Then we show that the matrix associated with this dual certificate is PSD (positive semi-definite) with high probability over the choice of the input graph.This requires the use of certain tools. One is the theory of association schemes, and in particular the eigenspaces and eigenvalues of the Johnson scheme. Another is a combinatorial method we develop to compute (via traces) norm bounds for certain random matrices whose entries are highly dependent; we hope this method will be useful elsewhere

    Colored de Bruijn Graphs and the Genome Halving Problem

    Get PDF
    Breakpoint graph analysis is a key algorithmic technique in studies of genome rearrangements. However, breakpoint graphs are defined only for genomes without duplicated genes, thus limiting their applications in rearrangement analysis. We discuss a connection between the breakpoint graphs and de Bruijn graphs that leads to a generalization of the notion of breakpoint graph for genomes with duplicated genes. We further use the generalized breakpoint graphs to study the Genome Halving Problem (first introduced and solved by Nadia El-Mabrouk and David Sankoff). The El-Mabrouk-Sankoff algorithm is rather complex, and, in this paper, we present an alternative approach that is based on generalized breakpoint graphs. The generalized breakpoint graphs make the El-Mabrouk-Sankoff result more transparent and promise to be useful in future studies of genome rearrangements

    Are There Rearrangement Hotspots in the Human Genome?

    Get PDF
    In a landmark paper, Nadeau and Taylor [18] formulated the random breakage model (RBM) of chromosome evolution that postulates that there are no rearrangement hotspots in the human genome. In the next two decades, numerous studies with progressively increasing levels of resolution made RBM the de facto theory of chromosome evolution. Despite the fact that RBM had prophetic prediction power, it was recently refuted by Pevzner and Tesler [4], who introduced the fragile breakage model (FBM), postulating that the human genome is a mosaic of solid regions (with low propensity for rearrangements) and fragile regions (rearrangement hotspots). However, the rebuttal of RBM caused a controversy and led to a split among researchers studying genome evolution. In particular, it remains unclear whether some complex rearrangements (e.g., transpositions) can create an appearance of rearrangement hotspots. We contribute to the ongoing debate by analyzing multi-break rearrangements that break a genome into multiple fragments and further glue them together in a new order. In particular, we demonstrate that (1) even if transpositions were a dominant force in mammalian evolution, the arguments in favor of FBM still stand, and (2) the ‘‘gene deletion’’ argument against FBM is flawed
    • …
    corecore