207 research outputs found

    Expression characteristics of the transfer-related kilB gene product of Streptomyces plasmid pIJ101: Implications for the plasmid spread function

    Get PDF
    Intermycelial transfer of Streptomyces plasmid pIJ101 occurs prior to cellular differentiation and is mediated by plasmid functions that are also required for production of zones of growth-inhibited recipient cells (i.e., pocks) that develop around individual donors during mating on agar medium. Several other pIJ101 functions, including that of the kilB gene, whose unregulated expression on pIJ101 is lethal, are required for normal pock size and so have been postulated to mediate intramycelial spread of the plasmid throughout recipient cells. Using antibodies raised against a KilB fusion protein expressed in Escherichia coli, native KilB protein was detected throughout development of pIJ101-containing Streptomyces lividans cells, with the concentration of KilB increasing dramatically and reaching a maximum during the final stages (i.e., sporulation and secondary metabolism) of cellular differentiation. Insertion of the kilB gene of pIJ101 into the S. lividans chromosome in cells lacking the pIJ101 KorB protein, which normally represses kilB gene transcription, resulted in elevated but still temporally increasing amounts of KilB. The increased expression or accumulation of the KilB spread protein throughout cellular differentiation of S. lividans, which leads to maximum KilB concentrations during developmental stages that occur far later than when intermycelial transfer of pIJ101 is mediated, supports the existence of a subsequent intramycelial component to the pIJ101 spread function. The results also suggest that intramycelial spread of pIJ101 molecules within the recipient extends beyond intercompartmental movements within the mycelia and includes undetermined steps within the spore-yielding aerial hyphae as well

    Diversity within Streptomyces ipomoeae based on inhibitory interactions, rep-PCR, and plasmid profiles

    Get PDF
    Streptomyces soil rot is a destructive disease of sweetpotato (Ipomoea batatas) that causes yield loss resulting from decay of the feeder root system and reduced quality due to the presence of necrotic lesions on the storage roots. It is managed by the use of resistant cultivars, but variability of the pathogen has not been previously assessed. This study compared 36 strains of the pathogen Streptomyces ipomoeae from different locations in the United States and Japan. The strains could be separated into three groups on the basis of their ability to inhibit the growth of one another in in vitro assays. Although some strains contained plasmids of approximately 18, 42, or 270 kb in size, plasmid profiles did not correspond to inhibition grouping. Fingerprinting by repetitive element-based polymerase chain reaction (rep-PCR) using outwardly facing primers for the BOX, enterobacterial repetitive intergenic consensus (ERIC), and repetitive extragenic palindromic (REP) sequences indicated relatively high genomic homogeneity within S. ipomoeae. However, cluster analysis of similarity coefficients among strains using rep-PCR data revealed clusters that correlated with the inhibition grouping. The neotype strain of S. ipomoeae had lower similarity values by rep-PCR than any of the other strains and could not be grouped by inhibitory interactions

    Semilattices, Canonical Embeddings and Representing Measures

    Full text link
    We provide conditions under which a modular function defined on a semilattice XX and with values in a commutative group is homomorphic to a modular function on a lattice LL for any embedding X↪LX\hookrightarrow L

    A Pettis-Type Integral and Applications to Transition Semigroups

    Get PDF
    Motivated by applications to transition semigroups, we introduce the notion of a norming dual pair and study a Pettis-type integral on such pairs. In particular, we establish a sufficient condition for integrability. We also introduce and study a class of semigroups on such dual pairs which are an abstract version of transition semigroups. Using our results, we give conditions ensuring that a semigroup consisting of kernel operators has a Laplace transform which also consists of kernel operators. We also provide conditions under which a semigroup is uniquely determined by its Laplace transform.Comment: Incorporated referee's comments; final versio

    Beyond ‘geo-economics’: advanced unevenness and the anatomy of German austerity

    Get PDF
    This article aims to shed new light on Germany’s domineering role in the eurocrisis. I argue that the realist-inspired depiction of Germany as a ‘geo-economic power’, locked into zero-sum competition with its European partners, is built around an empty core: unable to theorise how anarchy shapes the calculus of states where security competition has receded, it cannot explain why German state managers have insisted on an austerity response to the crisis despite its significant risks and costs even for Germany itself. To unlock this puzzle, this article outlines a version of uneven and combined development (UCD) that is better able to capture the international pressures and opportunities faced by policy elites in advanced capitalist states that no longer encounter one another as direct security rivals. Applied to Germany, this lens reveals a twofold unevenness in the historical structures and growth cycles of capitalist economies that shape its contradictory choice for austerity. In the long run, the reorientation of the export-dependent German economy from Europe towards Asian and Latin American late industrialisers renders the structural adjustment of the eurozone an opportunity—from the cost-saving view of German manufacturers producing in the European home market for export abroad, as well as for German state officials keen to sustain a crumbling class compromise centred on Germany’s world market success. In the short term, however, its exposed position between the divergent post-crisis trajectories of the US and Europe accelerates pressures for austerity beyond what German state and corporate elites would otherwise consider feasible

    Colony Collapse Disorder: A Descriptive Study

    Get PDF
    BACKGROUND: Over the last two winters, there have been large-scale, unexplained losses of managed honey bee (Apis mellifera L.) colonies in the United States. In the absence of a known cause, this syndrome was named Colony Collapse Disorder (CCD) because the main trait was a rapid loss of adult worker bees. We initiated a descriptive epizootiological study in order to better characterize CCD and compare risk factor exposure between populations afflicted by and not afflicted by CCD. METHODS AND PRINCIPAL FINDINGS: Of 61 quantified variables (including adult bee physiology, pathogen loads, and pesticide levels), no single measure emerged as a most-likely cause of CCD. Bees in CCD colonies had higher pathogen loads and were co-infected with a greater number of pathogens than control populations, suggesting either an increased exposure to pathogens or a reduced resistance of bees toward pathogens. Levels of the synthetic acaricide coumaphos (used by beekeepers to control the parasitic mite Varroa destructor) were higher in control colonies than CCD-affected colonies. CONCLUSIONS/SIGNIFICANCE: This is the first comprehensive survey of CCD-affected bee populations that suggests CCD involves an interaction between pathogens and other stress factors. We present evidence that this condition is contagious or the result of exposure to a common risk factor. Potentially important areas for future hypothesis-driven research, including the possible legacy effect of mite parasitism and the role of honey bee resistance to pesticides, are highlighted

    Molecular approaches to the analysis of deformed wing virus replication and pathogenesis in the honey bee, Apis mellifera

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For years, the understanding of the pathogenetic mechanisms that underlie honey bee viral diseases has been severely hindered because of the lack of a cell culture system for virus propagation. As a result, it is very imperative to develop new methods that would permit the <it>in vitro </it>pathogenesis study of honey bee viruses. The identification of virus replication is an important step towards the understanding of the pathogenesis process of viruses in their respective hosts. In the present study, we developed a strand-specific RT-PCR-based method for analysis of Deformed Wing Virus (DWV) replication in honey bees and in honey bee parasitic mites, <it>Varroa Destructor</it>.</p> <p>Results</p> <p>The results shows that the method developed in our study allows reliable identification of the virus replication and solves the problem of falsely-primed cDNA amplifications that commonly exists in the current system. Using TaqMan real-time quantitative RT-PCR incorporated with biotinylated primers and magnetic beads purification step, we characterized the replication and tissue tropism of DWV infection in honey bees. We provide evidence for DWV replication in the tissues of wings, head, thorax, legs, hemolymph, and gut of honey bees and also in Varroa mites.</p> <p>Conclusion</p> <p>The strategy reported in the present study forms a model system for studying bee virus replication, pathogenesis and immunity. This study should be a significant contribution to the goal of achieving a better understanding of virus pathogenesis in honey bees and to the design of appropriate control measures for bee populations at risk to virus infections.</p

    Uncovering the Prevalence and Diversity of Integrating Conjugative Elements in Actinobacteria

    Get PDF
    Horizontal gene transfer greatly facilitates rapid genetic adaptation of bacteria to shifts in environmental conditions and colonization of new niches by allowing one-step acquisition of novel functions. Conjugation is a major mechanism of horizontal gene transfer mediated by conjugative plasmids and integrating conjugative elements (ICEs). While in most bacterial conjugative systems DNA translocation requires the assembly of a complex type IV secretion system (T4SS), in Actinobacteria a single DNA FtsK/SpoIIIE-like translocation protein is required. To date, the role and diversity of ICEs in Actinobacteria have received little attention. Putative ICEs were searched for in 275 genomes of Actinobacteria using HMM-profiles of proteins involved in ICE maintenance and transfer. These exhaustive analyses revealed 144 putative FtsK/SpoIIIE-type ICEs and 17 putative T4SS-type ICEs. Grouping of the ICEs based on the phylogenetic analyses of maintenance and transfer proteins revealed extensive exchanges between different sub-families of ICEs. 17 ICEs were found in Actinobacteria from the genus Frankia, globally important nitrogen-fixing microorganisms that establish root nodule symbioses with actinorhizal plants. Structural analysis of ICEs from Frankia revealed their unexpected diversity and a vast array of predicted adaptive functions. Frankia ICEs were found to excise by site-specific recombination from their host's chromosome in vitro and in planta suggesting that they are functional mobile elements whether Frankiae live as soil saprophytes or plant endosymbionts. Phylogenetic analyses of proteins involved in ICEs maintenance and transfer suggests that active exchange between ICEs cargo-borne and chromosomal genes took place within the Actinomycetales order. Functionality of Frankia ICEs in vitro as well as in planta lets us anticipate that conjugation and ICEs could allow the development of genetic manipulation tools for this challenging microorganism and for many other Actinobacteria

    Remarks on the Cauchy functional equation and variations of it

    Full text link
    This paper examines various aspects related to the Cauchy functional equation f(x+y)=f(x)+f(y)f(x+y)=f(x)+f(y), a fundamental equation in the theory of functional equations. In particular, it considers its solvability and its stability relative to subsets of multi-dimensional Euclidean spaces and tori. Several new types of regularity conditions are introduced, such as a one in which a complex exponent of the unknown function is locally measurable. An initial value approach to analyzing this equation is considered too and it yields a few by-products, such as the existence of a non-constant real function having an uncountable set of periods which are linearly independent over the rationals. The analysis is extended to related equations such as the Jensen equation, the multiplicative Cauchy equation, and the Pexider equation. The paper also includes a rather comprehensive survey of the history of the Cauchy equation.Comment: To appear in Aequationes Mathematicae (important remark: the acknowledgments section in the official paper exists, but it appears before the appendix and not before the references as in the arXiv version); correction of a minor inaccuracy in Lemma 3.2 and the initial value proof of Theorem 2.1; a few small improvements in various sections; added thank
    • …
    corecore