300 research outputs found
Sharp Bounds on Davenport-Schinzel Sequences of Every Order
One of the longest-standing open problems in computational geometry is to
bound the lower envelope of univariate functions, each pair of which
crosses at most times, for some fixed . This problem is known to be
equivalent to bounding the length of an order- Davenport-Schinzel sequence,
namely a sequence over an -letter alphabet that avoids alternating
subsequences of the form with length
. These sequences were introduced by Davenport and Schinzel in 1965 to
model a certain problem in differential equations and have since been applied
to bounding the running times of geometric algorithms, data structures, and the
combinatorial complexity of geometric arrangements.
Let be the maximum length of an order- DS sequence over
letters. What is asymptotically? This question has been answered
satisfactorily (by Hart and Sharir, Agarwal, Sharir, and Shor, Klazar, and
Nivasch) when is even or . However, since the work of Agarwal,
Sharir, and Shor in the mid-1980s there has been a persistent gap in our
understanding of the odd orders.
In this work we effectively close the problem by establishing sharp bounds on
Davenport-Schinzel sequences of every order . Our results reveal that,
contrary to one's intuition, behaves essentially like
when is odd. This refutes conjectures due to Alon et al.
(2008) and Nivasch (2010).Comment: A 10-page extended abstract will appear in the Proceedings of the
Symposium on Computational Geometry, 201
Sources of Superlinearity in Davenport-Schinzel Sequences
A generalized Davenport-Schinzel sequence is one over a finite alphabet that
contains no subsequences isomorphic to a fixed forbidden subsequence. One of
the fundamental problems in this area is bounding (asymptotically) the maximum
length of such sequences. Following Klazar, let Ex(\sigma,n) be the maximum
length of a sequence over an alphabet of size n avoiding subsequences
isomorphic to \sigma. It has been proved that for every \sigma, Ex(\sigma,n) is
either linear or very close to linear; in particular it is O(n
2^{\alpha(n)^{O(1)}}), where \alpha is the inverse-Ackermann function and O(1)
depends on \sigma. However, very little is known about the properties of \sigma
that induce superlinearity of \Ex(\sigma,n).
In this paper we exhibit an infinite family of independent superlinear
forbidden subsequences. To be specific, we show that there are 17 prototypical
superlinear forbidden subsequences, some of which can be made arbitrarily long
through a simple padding operation. Perhaps the most novel part of our
constructions is a new succinct code for representing superlinear forbidden
subsequences
Threesomes, Degenerates, and Love Triangles
The 3SUM problem is to decide, given a set of real numbers, whether any
three sum to zero. It is widely conjectured that a trivial -time
algorithm is optimal and over the years the consequences of this conjecture
have been revealed. This 3SUM conjecture implies lower bounds on
numerous problems in computational geometry and a variant of the conjecture
implies strong lower bounds on triangle enumeration, dynamic graph algorithms,
and string matching data structures.
In this paper we refute the 3SUM conjecture. We prove that the decision tree
complexity of 3SUM is and give two subquadratic 3SUM
algorithms, a deterministic one running in
time and a randomized one running in time with
high probability. Our results lead directly to improved bounds for -variate
linear degeneracy testing for all odd . The problem is to decide, given
a linear function and a set , whether . We show the
decision tree complexity of this problem is .
Finally, we give a subcubic algorithm for a generalization of the
-product over real-valued matrices and apply it to the problem of
finding zero-weight triangles in weighted graphs. We give a
depth- decision tree for this problem, as well as an
algorithm running in time
Connectivity Oracles for Graphs Subject to Vertex Failures
We introduce new data structures for answering connectivity queries in graphs
subject to batched vertex failures. A deterministic structure processes a batch
of failed vertices in time and thereafter
answers connectivity queries in time. It occupies space . We develop a randomized Monte Carlo version of our data structure
with update time , query time , and space
for any failure bound . This is the first connectivity oracle for
general graphs that can efficiently deal with an unbounded number of vertex
failures.
We also develop a more efficient Monte Carlo edge-failure connectivity
oracle. Using space , edge failures are processed in time and thereafter, connectivity queries are answered in
time, which are correct w.h.p.
Our data structures are based on a new decomposition theorem for an
undirected graph , which is of independent interest. It states that
for any terminal set we can remove a set of
vertices such that the remaining graph contains a Steiner forest for with
maximum degree
A Linear-Size Logarithmic Stretch Path-Reporting Distance Oracle for General Graphs
In 2001 Thorup and Zwick devised a distance oracle, which given an -vertex
undirected graph and a parameter , has size . Upon a query
their oracle constructs a -approximate path between
and . The query time of the Thorup-Zwick's oracle is , and it was
subsequently improved to by Chechik. A major drawback of the oracle of
Thorup and Zwick is that its space is . Mendel and Naor
devised an oracle with space and stretch , but their
oracle can only report distance estimates and not actual paths. In this paper
we devise a path-reporting distance oracle with size , stretch
and query time , for an arbitrarily small .
In particular, our oracle can provide logarithmic stretch using linear size.
Another variant of our oracle has size , polylogarithmic
stretch, and query time .
For unweighted graphs we devise a distance oracle with multiplicative stretch
, additive stretch , for a function , space
, and query time , for an arbitrarily
small constant . The tradeoff between multiplicative stretch and
size in these oracles is far below girth conjecture threshold (which is stretch
and size ). Breaking the girth conjecture tradeoff is
achieved by exhibiting a tradeoff of different nature between additive stretch
and size . A similar type of tradeoff was exhibited by
a construction of -spanners due to Elkin and Peleg.
However, so far -spanners had no counterpart in the
distance oracles' world.
An important novel tool that we develop on the way to these results is a
{distance-preserving path-reporting oracle}
A Time Hierarchy Theorem for the LOCAL Model
The celebrated Time Hierarchy Theorem for Turing machines states, informally,
that more problems can be solved given more time. The extent to which a time
hierarchy-type theorem holds in the distributed LOCAL model has been open for
many years. It is consistent with previous results that all natural problems in
the LOCAL model can be classified according to a small constant number of
complexities, such as , etc.
In this paper we establish the first time hierarchy theorem for the LOCAL
model and prove that several gaps exist in the LOCAL time hierarchy.
1. We define an infinite set of simple coloring problems called Hierarchical
-Coloring}. A correctly colored graph can be confirmed by simply
checking the neighborhood of each vertex, so this problem fits into the class
of locally checkable labeling (LCL) problems. However, the complexity of the
-level Hierarchical -Coloring problem is ,
for . The upper and lower bounds hold for both general graphs
and trees, and for both randomized and deterministic algorithms.
2. Consider any LCL problem on bounded degree trees. We prove an
automatic-speedup theorem that states that any randomized -time
algorithm solving the LCL can be transformed into a deterministic -time algorithm. Together with a previous result, this establishes that on
trees, there are no natural deterministic complexities in the ranges
--- or ---.
3. We expose a gap in the randomized time hierarchy on general graphs. Any
randomized algorithm that solves an LCL problem in sublogarithmic time can be
sped up to run in time, which is the complexity of the distributed
Lovasz local lemma problem, currently known to be and
- …