35 research outputs found

    Topical treatment of equine sarcoids with imiquimod 5% cream or Sanguinaria canadensis and zinc chloride - an open prospective study

    Get PDF
    Background Equine sarcoids are the most prevalent skin neoplasm in horses worldwide. Although several treatments are available, none are consistently effective and recurrence is common. Objectives To evaluate the efficacy and safety of topical imiquimod 5% cream andSanguinaria canadensis + zinc chloride for treatment of equine sarcoids and investigate possible systemic effects on distant untreated sarcoids. Animals/Tumours Twenty-five client-owned horses with a total of 164 tumours were included in the study. Fifty-seven tumours were treated and 107 tumours were left untreated. Methods and materials Biopsies were taken from a minimum of one tumour per horse and the rest were diagnosed based on clinical appearance as likely sarcoids. Imiquimod 5% (A) was applied three times weekly, whileSanguinaria canadensis + zinc chloride (X) was applied every fourth day after a six day daily initiation phase. Treatment continued until clinical remission or for a maximum of 45 weeks, with a long follow-up period (mean 34 months). Biopsies of sarcoids were re-taken before treatment termination and at follow-up if the owner gave consent. Results Complete remission was recorded in 84.4% (A) and 75.0% (X) of the tumours. Relapse was recorded in 7.3% (A) and 21.4% (X). Spontaneous remission was observed in 1.9% of untreated tumours. No systemic effect on untreated tumours was detected. During treatment varying degrees of local inflammatory reaction were common. Conclusions and clinical relevance Both treatments were considered effective and safe. Smaller tumours responded more favourably to treatment. Relapse rate was low and not observed in sarcoids with repeat biopsies before treatment termination

    Dominantly inherited distal nemaline/cap myopathy caused by a large deletion in the nebulin gene

    Get PDF
    We report the first family with a dominantly inherited mutation of the nebulin gene (NEB). This 100kb in-frame deletion encompasses NEB exons 14-89, causing distal nemaline/cap myopathy in a three-generation family. It is the largest deletion characterized in NEB hitherto. The mutated allele was shown to be expressed at the mRNA level and furthermore, for the first time, a deletion was shown to cause the production of a smaller mutant nebulin protein. Thus, we suggest that this novel mutant nebulin protein has a dominant-negative effect, explaining the first documented dominant inheritance of nebulin-caused myopathy. The index patient, a young man, was more severely affected than his mother and grandmother. His first symptom was foot drop at the age of three, followed by distal muscle atrophy, slight hypomimia, high-arched palate, and weakness of the neck and elbow flexors, hands, tibialis anterior and toe extensors. Muscle biopsies showed myopathic features with type 1 fibre predominance in the index patient and nemaline bodies and cap-like structures in biopsies from his mother and grandmother. The muscle biopsy findings constitute a further example of nemaline bodies and cap-like structures being part of the same spectrum of pathological changes. (C) 2019 Elsevier B.V. All rights reserved.Peer reviewe

    Nemaline Myopathy in Brazilian Patients: Molecular and Clinical Characterization

    Get PDF
    Nemaline myopathy (NM), a structural congenital myopathy, presents a significant clinical and genetic heterogeneity. Here, we compiled molecular and clinical data of 30 Brazilian patients from 25 unrelated families. Next-generation sequencing was able to genetically classify all patients: sixteen families (64%) with mutation in NEB, five (20%) in ACTA1, two (8%) in KLHL40, and one in TPM2 (4%) and TPM3 (4%). In the NEB-related families, 25 different variants, 11 of them novel, were identified; splice site (10/25) and frame shift (9/25) mutations were the most common. Mutation c.24579 G>C was recurrent in three unrelated patients from the same region, suggesting a common ancestor. Clinically, the “typical” form was the more frequent and caused by mutations in the different NM genes. Phenotypic heterogeneity was observed among patients with mutations in the same gene. Respiratory involvement was very common and often out of proportion with limb weakness. Muscle MRI patterns showed variability within the forms and genes, which was related to the severity of the weakness. Considering the high frequency of NEB mutations and the complexity of this gene, NGS tools should be combined with CNV identification, especially in patients with a likely non-identified second mutation

    Nemaline Myopathy in Brazilian Patients: Molecular and Clinical Characterization

    Get PDF
    Nemaline myopathy (NM), a structural congenital myopathy, presents a significant clinical and genetic heterogeneity. Here, we compiled molecular and clinical data of 30 Brazilian patients from 25 unrelated families. Next-generation sequencing was able to genetically classify all patients: sixteen families (64%) with mutation in NEB, five (20%) in ACTA1, two (8%) in KLHL40, and one in TPM2 (4%) and TPM3 (4%). In the NEB-related families, 25 different variants, 11 of them novel, were identified; splice site (10/25) and frame shift (9/25) mutations were the most common. Mutation c.24579 G>C was recurrent in three unrelated patients from the same region, suggesting a common ancestor. Clinically, the “typical” form was the more frequent and caused by mutations in the different NM genes. Phenotypic heterogeneity was observed among patients with mutations in the same gene. Respiratory involvement was very common and often out of proportion with limb weakness. Muscle MRI patterns showed variability within the forms and genes, which was related to the severity of the weakness. Considering the high frequency of NEB mutations and the complexity of this gene, NGS tools should be combined with CNV identification, especially in patients with a likely non-identified second mutation

    Nebulin nemaline myopathy recapitulated in a compound heterozygous mouse model with both a missense and a nonsense mutation in Neb

    Get PDF
    Nemaline myopathy (NM) caused by mutations in the gene encoding nebulin (NEB) accounts for at least 50% of all NM cases worldwide, representing a significant disease burden. Most NEB-NM patients have autosomal recessive disease due to a compound heterozygous genotype. Of the few murine models developed for NEB-NM, most are Neb knockout models rather than harbouring Neb mutations. Additionally, some models have a very severe phenotype that limits their application for evaluating disease progression and potential therapies. No existing murine models possess compound heterozygous Neb mutations that reflect the genotype and resulting phenotype present in most patients. We aimed to develop a murine model that more closely matched the underlying genetics of NEB-NM, which could assist elucidation of the pathogenetic mechanisms underlying the disease. Here, we have characterised a mouse strain with compound heterozygous Neb mutations; one missense (p.Tyr2303His), affecting a conserved actin-binding site and one nonsense mutation (p.Tyr935*), introducing a premature stop codon early in the protein. Our studies reveal that this compound heterozygous model, Neb(Y2303H, Y935X), has striking skeletal muscle pathology including nemaline bodies. In vitro whole muscle and single myofibre physiology studies also demonstrate functional perturbations. However, no reduction in lifespan was noted. Therefore, Neb(Y2303H,Y935X) mice recapitulate human NEB-NM and are a much needed addition to the NEB-NM mouse model collection. The moderate phenotype also makes this an appropriate model for studying NEB-NM pathogenesis, and could potentially be suitable for testing therapeutic applications.Peer reviewe

    Nebulin nemaline myopathy recapitulated in a compound heterozygous mouse model with both a missense and a nonsense mutation in Neb

    Get PDF
    Nemaline myopathy (NM) caused by mutations in the gene encoding nebulin (NEB) accounts for at least 50% of all NM cases worldwide, representing a significant disease burden. Most NEB-NM patients have autosomal recessive disease due to a compound heterozygous genotype. Of the few murine models developed for NEB-NM, most are Neb knockout models rather than harbouring Neb mutations. Additionally, some models have a very severe phenotype that limits their application for evaluating disease progression and potential therapies. No existing murine models possess compound heterozygous Neb mutations that reflect the genotype and resulting phenotype present in most patients. We aimed to develop a murine model that more closely matched the underlying genetics of NEB-NM, which could assist elucidation of the pathogenetic mechanisms underlying the disease. Here, we have characterised a mouse strain with compound heterozygous Neb mutations; one missense (p.Tyr2303His), affecting a conserved actin-binding site and one nonsense mutation (p.Tyr935*), introducing a premature stop codon early in the protein. Our studies reveal that this compound heterozygous model, Neb(Y2303H, Y935X), has striking skeletal muscle pathology including nemaline bodies. In vitro whole muscle and single myofibre physiology studies also demonstrate functional perturbations. However, no reduction in lifespan was noted. Therefore, Neb(Y2303H,Y935X) mice recapitulate human NEB-NM and are a much needed addition to the NEB-NM mouse model collection. The moderate phenotype also makes this an appropriate model for studying NEB-NM pathogenesis, and could potentially be suitable for testing therapeutic applications.Peer reviewe

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Nemaline myopathies: a current view

    Get PDF
    Nemaline myopathies are a heterogenous group of congenital myopathies caused by de novo, dominantly or recessively inherited mutations in at least twelve genes. The genes encoding skeletal α-actin (ACTA1) and nebulin (NEB) are the commonest genetic cause. Most patients have congenital onset characterized by muscle weakness and hypotonia, but the spectrum of clinical phenotypes is broad, ranging from severe neonatal presentations to onset of a milder disorder in childhood. Most patients with adult onset have an autoimmune-related myopathy with a progressive course. The wide application of massively parallel sequencing methods is increasing the number of known causative genes and broadening the range of clinical phenotypes. Nemaline myopathies are identified by the presence of structures that are rod-like or ovoid in shape with electron microscopy, and with light microscopy stain red with the modified Gömöri trichrome technique. These rods or nemaline bodies are derived from Z lines (also known as Z discs or Z disks) and have a similar lattice structure and protein content. Their shape in patients with mutations in KLHL40 and LMOD3 is distinctive and can be useful for diagnosis. The number and distribution of nemaline bodies varies between fibres and different muscles but does not correlate with severity or prognosis. Additional pathological features such as caps, cores and fibre type disproportion are associated with the same genes as those known to cause the presence of rods. Animal models are advancing the understanding of the effects of various mutations in different genes and paving the way for the development of therapies, which at present only manage symptoms and are aimed at maintaining muscle strength, joint mobility, ambulation, respiration and independence in the activities of daily living.Peer reviewe
    corecore