852 research outputs found

    The chemical composition and nutritive value of Australian pulses

    Get PDF
    Grain legumes are the harvested seed of leguminous crops, typically peas, beans and their close relatives within the Fabaceae. Another term for many of these crops is pulses. In Australia, generally grain legumes are referred to as pulses. The term pulse is derived from the Latin puls meaning that the seed or grain can be made into a thick soup or pottage. The term pulse is most commonly associated with the food legumes whereas grain legumes are mostly associated with the feed industry. The terms are interchangeable, but with few exceptions (notably chickpeas, lentils and mung beans), the majority of the crops are used for animal feed. Both soybeans and peanuts are leguminous plants; however they are traditionally regarded as oilseed crops, and will not be discussed here.https://researchlibrary.agric.wa.gov.au/books/1020/thumbnail.jp

    Poison sedge can kill stock

    Get PDF
    POISON SEDGE was first suspected of being toxic to livestock in Western Australia nearly 80 years ago. Sudden deaths of sheep grazing areas on which poison sedge grew have been reported from many regions from Geraldton to Scott River. This article reports a case of poisoning in the field, and the experimental reproduction of poison sedge toxicity in pen-fed sheep

    Implications of nonlinearity for spherically symmetric accretion

    Full text link
    We subject the steady solutions of a spherically symmetric accretion flow to a time-dependent radial perturbation. The equation of the perturbation includes nonlinearity up to any arbitrary order, and bears a form that is very similar to the metric equation of an analogue acoustic black hole. Casting the perturbation as a standing wave on subsonic solutions, and maintaining nonlinearity in it up to the second order, we get the time-dependence of the perturbation in the form of a Li\'enard system. A dynamical systems analysis of the Li\'enard system reveals a saddle point in real time, with the implication that instabilities will develop in the accreting system when the perturbation is extended into the nonlinear regime. The instability of initial subsonic states also adversely affects the temporal evolution of the flow towards a final and stable transonic state.Comment: 14 pages, ReVTeX. Substantially revised with respect to the previous version. Three figures and a new section (Sec. VI) adde

    Perturbations on steady spherical accretion in Schwarzschild geometry

    Full text link
    The stationary background flow in the spherically symmetric infall of a compressible fluid, coupled to the space-time defined by the static Schwarzschild metric, has been subjected to linearized perturbations. The perturbative procedure is based on the continuity condition and it shows that the coupling of the flow with the geometry of space-time brings about greater stability for the flow, to the extent that the amplitude of the perturbation, treated as a standing wave, decays in time, as opposed to the amplitude remaining constant in the Newtonian limit. In qualitative terms this situation simulates the effect of a dissipative mechanism in the classical Bondi accretion flow, defined in the Newtonian construct of space and time. As a result of this approach it becomes impossible to define an acoustic metric for a conserved spherically symmetric flow, described within the framework of Schwarzschild geometry. In keeping with this view, the perturbation, considered separately as a high-frequency travelling wave, also has its amplitude reduced.Comment: 8 pages, no figur

    Processing and grain quality to meet market demands

    Get PDF
    Considerable resources have been directed towards improving the nutritional quality of cool season food legumes with respect to protein content and amino acid pattern and to reducing the content of antinutritional factors such as trypsin inhibitors and haemaglutinins. Less attention has been paid to the processing and grain quality factors that affect the utilisation of these legumes. Two important market considerations are the dhal yield and consumer acceptance of the product. These are influenced by the size, shape, colour and, chemical composition of the grain, by storage conditions and any pre-treatment before use. The cooking time, texture, water absorption and dispersibility of solids are determinants of quality of these legumes as food. Under adverse storage conditions, the legumes can develop hard-to-cook defects, depending on genotype and cultural practices. Nutritional quality needs to be considered in terms of protein digestibility, antinutritional factors, availability of carbohydrates and content of essential micronutrients such as vitamin A, iron, copper and zinc. Available technologies such as roasting, steaming, germination, fermentation, and extrusion cooking, and protein isolation/concentration play a role in determining the product quality. These topics are reviewed and future research needs are suggested in the pape

    A Toy Model for Blandford-Znajek Mechanism

    Get PDF
    A toy model for the Blandford-Znajek mechanism is investigated: a Kerr black hole with a toroidal electric current residing in a thin disk around the black hole. The toroidal electric current generates a poloidal magnetic field threading the black hole and disk. Due to the interaction of the magnetic field with remote charged particles, the rotation of the black hole and disk induces an electromotive force, which can power an astrophysical load at remote distance. The power of the black hole and disk is calculated. It is found that, for a wide range of parameters specifying the rotation of the black hole and the distribution of the electric current in the disk, the power of the disk exceeds the power of the black hole. The torque provided by the black hole and disk is also calculated. The torque of the disk is comparable to the torque of the black hole. As the disk loses its angular momentum, the mass of the disk gradually drifts towards the black hole and gets accreted. Ultimately the power comes from the gravitational binding energy between the disk and the black hole, as in the standard theory of accretion disk, instead of the rotational energy of the black hole. This suggests that the Blandford-Znajek mechanism may be less efficient in extracting energy from a rotating black hole with a thin disk. The limitations of our simple model and possible improvements deserved for future work are also discussed.Comment: 16 pages, 4 figures. Accepted for publication in Physical Review

    Evolution of transonicity in an accretion disc

    Get PDF
    For inviscid, rotational accretion flows driven by a general pseudo-Newtonian potential on to a Schwarzschild black hole, the only possible fixed points are saddle points and centre-type points. For the specific choice of the Newtonian potential, the flow has only two critical points, of which the outer one is a saddle point while the inner one is a centre-type point. A restrictive upper bound is imposed on the admissible range of values of the angular momentum of sub-Keplerian flows through a saddle point. These flows are very unstable to any deviation from a necessarily precise boundary condition. The difficulties against the physical realisability of a solution passing through the saddle point have been addressed through a temporal evolution of the flow, which gives a non-perturbative mechanism for selecting a transonic solution passing through the saddle point. An equation of motion for a real-time perturbation about the stationary flows reveals a very close correspondence with the metric of an acoustic black hole, which is also an indication of the primacy of transonicity.Comment: 18 page

    Improving the Prospects for Detecting Extrasolar Planets in Gravitational Microlensing in 2002

    Full text link
    Gravitational microlensing events of high magnification have been shown to be promising targets for detecting extrasolar planets. However, only a few events of high magnification have been found using conventional survey techniques. Here we demonstrate that high magnification events can be readily found in microlensing surveys using a strategy that combines high frequency sampling of target fields with online difference imaging analysis. We present 10 microlensing events with peak magnifications greater than 40 that were detected in real-time towards the Galactic Bulge during 2001 by MOA. We show that Earth mass planets can be detected in future events such as these through intensive follow-up observations around the event peaks. We report this result with urgency as a similar number of such events are expected in 2002.Comment: 11 pages, 3 embedded ps figures including 2 colour, revised version accepted by MNRA

    Warp propagation in astrophysical discs

    Full text link
    Astrophysical discs are often warped, that is, their orbital planes change with radius. This occurs whenever there is a non-axisymmetric force acting on the disc, for example the Lense-Thirring precession induced by a misaligned spinning black hole, or the gravitational pull of a misaligned companion. Such misalignments appear to be generic in astrophysics. The wide range of systems that can harbour warped discs - protostars, X-ray binaries, tidal disruption events, quasars and others - allows for a rich variety in the disc's response. Here we review the basic physics of warped discs and its implications.Comment: To be published in Astrophysical Black Holes by Haardt et al., Lecture Notes in Physics, Springer 2015. 19 pages, 2 figure
    • …
    corecore