845 research outputs found

    BACs as tools for the study of genomic imprinting.

    Get PDF
    Genomic imprinting in mammals results in the expression of genes from only one parental allele. Imprinting occurs as a consequence of epigenetic marks set down either in the father's or the mother's germ line and affects a very specific category of mammalian gene. A greater understanding of this distinctive phenomenon can be gained from studies using large genomic clones, called bacterial artificial chromosomes (BACs). Here, we review the important applications of BACs to imprinting research, covering physical mapping studies and the use of BACs as transgenes in mice to study gene expression patterns, to identify imprinting centres, and to isolate the consequences of altered gene dosage. We also highlight the significant and unique advantages that rapid BAC engineering brings to genomic imprinting research

    Mobilisation du bois et approvisionnement pour une filière bois énergie en Languedoc-Roussillon -

    Get PDF
    L'approche économique est l'élément clef de la réflexion sur le développement du bois énergie en forêt méditerranéenne. Les outils d'analyse économique sont indispensables pour permettre de juger de l'opportunité qu'offre le bois énergie. Des études méthodologiques existent qui permettent de prendre en compte l'ensemble des facteurs économiques pour pouvoir juger de la mise en place durable de la filière dans un contexte local spécifique à chaque territoire, comme celle présentée ici et réalisée en Languedoc-Roussillo

    Soft and flexible poly(ethylene glycol) nanotubes for local drug delivery

    Get PDF
    Nanotubes are emerging as promising materials for healthcare applications but the selection of clinically relevant starting materials for their synthesis remains largely unexplored. Here we present, for the first time, the synthesis of poly(ethylene glycol) (PEG) based nanotubes via the photopolymerization of poly(ethylene glycol) diacrylate and other diacrylate derivatives within the pores of anodized aluminum oxide templates. Template-assisted synthesis allowed the manufacture of a diverse set of polymeric nanotubes with tunable physical characteristics including diameter (∼200–400 nm) and stiffness (405–902 kPa). PEG nanotubes were subjected to cytotoxicty assessment in cell lines and primary stem cells and showed excellent cytocompatability (IC50 > 120 μg ml−1). Nanotubes were readily drug loaded but released the majority of the drug over 5 days. Direct administration of drug loaded nanotubes to human orthotopic breast tumors substantially reduced tumor growth and metastasis and outperformed i.v. administration at the equivalent dose. Overall, this nanotube templating platform is emerging as a facile route for the manufacture of poly(ethylene glycol) nanotubes

    Endocrine profile of the kisspeptin receptor agonist MVT-602 in healthy premenopausal women with and without ovarian stimulation: results from two randomized, placebo-controlled clinical trials

    Get PDF
    Kisspeptin is an essential regulator of hypothalamic gonadotropin-releasing hormone release and is required for physiological ovulation. Native kisspeptin-54 (KP54) can induce oocyte maturation during in vitro fertilization treatment, including in women at high risk of ovarian hyperstimulation syndrome. MVT-602 is a potent kisspeptin receptor agonist with prospective utility to treat anovulatory disorders by triggering oocyte maturation and ovulation during medically assisted reproduction (MAR). Currently, the endocrine profile of MVT-602 during ovarian stimulation is unreported. Objective To determine the endocrine profile of MVT-602 in the follicular phase of healthy premenopausal women (Phase-1 trial), and after minimal ovarian stimulation to more closely reflect the endocrine milieu encountered during MAR (Phase-2a trial). Design Two randomized, placebo-controlled, parallel group, dose-finding trials. Setting Clinical trials unit, Netherlands. Participants Healthy women aged 18-35 years, either without (Phase-1; n=24), or with ovarian stimulation (Phase-2a; n=75). Interventions Phase-1: Single subcutaneous dose of MVT-602 (0.3, 1.0, or 3.0 μg) or placebo, (n=6 per dose). Phase-2a: Single subcutaneous dose of MVT-602 (0.1, 0.3, 1.0, or 3.0 μg; n=16-17 per dose), triptorelin 0.2 mg (n=5; active comparator), or placebo (n=5). Main Objectives and Outcome Measures Phase-1: Safety/tolerability; pharmacokinetics; pharmacodynamics (LH and other reproductive hormones). Phase-2a: Safety/tolerability; pharmacokinetics; pharmacodynamics (LH and other reproductive hormones); time to ovulation assessed by transvaginal ultrasound. Results In both trials, MVT-602 was safe and well-tolerated across the entire dose-range. It was rapidly absorbed and eliminated, with a mean elimination half-life of 1.3-2.2 hours. In the Phase-2a trial, LH concentrations increased dose-dependently; mean maximum change from baseline of 82.4 IU/L at 24.8 hours was observed after administration of 3μg MVT-602 and remained above 15 IU/L for 33 hours. Time to ovulation following drug administration was 3.3-3.9 days (MVT-602), 3.4 days (triptorelin), and 5.5 days (placebo). Ovulation occurred within 5 days of administration in 100% (3 μg), 88% (1μg), 82% (0.3μg), and 75% (0.1μg), of women after MVT-602, 100% after triptorelin, and 60% after placebo. Conclusions MVT-602 induces LH concentrations of similar amplitude and duration as the physiological mid-cycle LH surge with potential utility for induction of oocyte maturation and ovulation during MAR

    Drug-induced loss of imprinting revealed using bioluminescent reporters of Cdkn1c.

    Get PDF
    Genomic imprinting is an epigenetically mediated mechanism that regulates allelic expression of genes based upon parent-of-origin and provides a paradigm for studying epigenetic silencing and release. Here, bioluminescent reporters for the maternally-expressed imprinted gene Cdkn1c are used to examine the capacity of chromatin-modifying drugs to reverse paternal Cdkn1c silencing. Exposure of reporter mouse embryonic stem cells (mESCs) to 5-Azacytidine, HDAC inhibitors, BET inhibitors or GSK-J4 (KDM6A/B inhibitor) relieved repression of paternal Cdkn1c, either selectively or by inducing biallelic effects. Treatment of reporter fibroblasts with HDAC inhibitors or GSK-J4 resulted in similar paternal Cdkn1c activation, whereas BET inhibitor-induced loss of imprinting was specific to mESCs. Changes in allelic expression were generally not sustained in dividing cultures upon drug removal, indicating that the underlying epigenetic memory of silencing was maintained. In contrast, Cdkn1c de-repression by GSK-J4 was retained in both mESCs and fibroblasts following inhibitor removal, although this impact may be linked to cellular stress and DNA damage. Taken together, these data introduce bioluminescent reporter cells as tools for studying epigenetic silencing and disruption, and demonstrate that Cdkn1c imprinting requires distinct and cell-type specific chromatin features and modifying enzymes to enact and propagate a memory of silencing

    Loss of Imprinting of Cdkn1c Protects against Age and Diet-Induced Obesity.

    Get PDF
    Cyclin dependent kinase inhibitor 1c (Cdkn1c) is a maternally expressed imprinted gene with roles in embryonic development, post-natal metabolism and behaviour. Using mouse models with altered dosages of Cdkn1c, we have previously identified a role for the gene in promoting brown adipose tissue formation. Here, we use these transgenic mouse lines to model the loss of imprinting of Cdkn1c in adulthood. We demonstrate that only a two-fold increase in the expression of Cdkn1c during development is sufficient to protect against age-related weight gain in addition to glucose and insulin intolerance. Further to this, we show that the loss of imprinting of Cdkn1c protects against diet-induced obesity. Bisulphite sequencing was performed to test the stability of the two differentially methylated regions that regulate Cdkn1c imprinting, and both were found to be unaltered in aged or diet-challenged adipose tissue, despite drastic reductions in Cdkn1c expression. These data demonstrate a critical role for Cdkn1c in regulating adult adipose tissue, with modest changes in expression capable of protecting against both age and diet-induced obesity and metabolic syndrome, with a natural decline in Cdkn1c expression observed that may contribute to less healthy metabolic aging. Finally, we have observed a post-natal insensitivity of the imprint to environmental factors, in contrast to recent observations of an in utero sensitivity.M.V.d.P. was supported by a BBSRC DTG studentship BB/F016557. S.J.T. was supported by BBSRC project grant BB/J015156 awarded to R.M.J

    Developing cardiac and skeletal muscle share fast-skeletal myosin heavy chain and cardiac troponin-I expression

    Get PDF
    Skeletal muscle derived stem cells (MDSCs) transplanted into injured myocardium can differentiate into fast skeletal muscle specific myosin heavy chain (sk-fMHC) and cardiac specific troponin-I (cTn-I) positive cells sustaining recipient myocardial function. We have recently found that MDSCs differentiate into a cardiomyocyte phenotype within a three-dimensional gel bioreactor. It is generally accepted that terminally differentiated myocardium or skeletal muscle only express cTn-I or sk-fMHC, respectively. Studies have shown the presence of non-cardiac muscle proteins in the developing myocardium or cardiac proteins in pathological skeletal muscle. In the current study, we tested the hypothesis that normal developing myocardium and skeletal muscle transiently share both sk-fMHC and cTn-I proteins. Immunohistochemistry, western blot, and RT-PCR analyses were carried out in embryonic day 13 (ED13) and 20 (ED20), neonatal day 0 (ND0) and 4 (ND4), postnatal day 10 (PND10), and 8 week-old adult female Lewis rat ventricular myocardium and gastrocnemius muscle. Confocal laser microscopy revealed that sk-fMHC was expressed as a typical striated muscle pattern within ED13 ventricular myocardium, and the striated sk-fMHC expression was lost by ND4 and became negative in adult myocardium. cTn-I was not expressed as a typical striated muscle pattern throughout the myocardium until PND10. Western blot and RT-PCR analyses revealed that gene and protein expression patterns of cardiac and skeletal muscle transcription factors and sk-fMHC within ventricular myocardium and skeletal muscle were similar at ED20, and the expression patterns became cardiac or skeletal muscle specific during postnatal development. These findings provide new insight into cardiac muscle development and highlight previously unknown common developmental features of cardiac and skeletal muscle. © 2012 Clause et al

    Functional and Biogenetical Heterogeneity of the Inner Membrane of Rat-Liver Mitochondria

    Get PDF
    Rat liver mitochondria were fragmented by a combined technique of swelling, shrinking, and sonication. Fragments of inner membrane were separated by density gradient centrifugation. They differed in several respects: electronmicroscopic appearance, phospholipid and cytochrome contents, electrophoretic behaviour of proteins and enzymatic activities. Three types of inner membrane fractions were isolated. The first type is characterized by a high activity of metal chelatase, low activities of succinate-cytochrome c reductase and of glycerolphosphate dehydrogenase, as well as by a high phospholipid content and low contents of cytochromes aa3 and b. The second type displays maximal activities of glycerolphosphate dehydrogenase and metal chelatase, but contains relatively little cytochromes and has low succinate-cytochrome c reductase activity. The third type exhibits highest succinate-cytochrome c reductase activity, a high metal chelatase activity and highest cytochrome contents. However, this fraction was low in both glycerolphosphate dehydrogenase activity and phospholipid content. This fraction was also richest in the following enzyme activities: cytochrome oxidase, oligomycin-sensitive ATPase, proline oxidase, 3-hydroxybutyrate dehydrogenase and rotenone-sensitive NADH-cytochrome c reductase. Amino acid incorporation in vitro and in vivo in the presence of cycloheximide occurs predominantly into inner membrane fractions from the second type. These data suggest that the inner membrane is composed of differently organized parts, and that polypeptides synthesized by mitochondrial ribosomes are integrated into specific parts of the inner membrane

    Arterial oxygen content is precisely maintained by graded erythrocytotic responses in settings of high/normal serum iron levels, and predicts exercise capacity: an observational study of hypoxaemic patients with pulmonary arteriovenous malformations.

    No full text
    Oxygen, haemoglobin and cardiac output are integrated components of oxygen transport: each gram of haemoglobin transports 1.34 mls of oxygen in the blood. Low arterial partial pressure of oxygen (PaO2), and haemoglobin saturation (SaO2), are the indices used in clinical assessments, and usually result from low inspired oxygen concentrations, or alveolar/airways disease. Our objective was to examine low blood oxygen/haemoglobin relationships in chronically compensated states without concurrent hypoxic pulmonary vasoreactivity.165 consecutive unselected patients with pulmonary arteriovenous malformations were studied, in 98 cases, pre/post embolisation treatment. 159 (96%) had hereditary haemorrhagic telangiectasia. Arterial oxygen content was calculated by SaO2 x haemoglobin x 1.34/100.There was wide variation in SaO2 on air (78.5-99, median 95)% but due to secondary erythrocytosis and resultant polycythaemia, SaO2 explained only 0.1% of the variance in arterial oxygen content per unit blood volume. Secondary erythrocytosis was achievable with low iron stores, but only if serum iron was high-normal: Low serum iron levels were associated with reduced haemoglobin per erythrocyte, and overall arterial oxygen content was lower in iron deficient patients (median 16.0 [IQR 14.9, 17.4]mls/dL compared to 18.8 [IQR 17.4, 20.1]mls/dL, p<0.0001). Exercise tolerance appeared unrelated to SaO2 but was significantly worse in patients with lower oxygen content (p<0.0001). A pre-defined athletic group had higher Hb:SaO2 and serum iron:ferritin ratios than non-athletes with normal exercise capacity. PAVM embolisation increased SaO2, but arterial oxygen content was precisely restored by a subsequent fall in haemoglobin: 86 (87.8%) patients reported no change in exercise tolerance at post-embolisation follow-up.Haemoglobin and oxygen measurements in isolation do not indicate the more physiologically relevant oxygen content per unit blood volume. This can be maintained for SaO2 ≥78.5%, and resets to the same arterial oxygen content after correction of hypoxaemia. Serum iron concentrations, not ferritin, seem to predict more successful polycythaemic responses
    corecore