2,794 research outputs found
Enzyme activities in liver and muscle biopsy specimens from thyrotoxic and hypothyroid patiens
Soft and flexible poly(ethylene glycol) nanotubes for local drug delivery
Nanotubes are emerging as promising materials for healthcare applications but the selection of clinically relevant starting materials for their synthesis remains largely unexplored. Here we present, for the first time, the synthesis of poly(ethylene glycol) (PEG) based nanotubes via the photopolymerization of poly(ethylene glycol) diacrylate and other diacrylate derivatives within the pores of anodized aluminum oxide templates. Template-assisted synthesis allowed the manufacture of a diverse set of polymeric nanotubes with tunable physical characteristics including diameter (∼200–400 nm) and stiffness (405–902 kPa). PEG nanotubes were subjected to cytotoxicty assessment in cell lines and primary stem cells and showed excellent cytocompatability (IC50 > 120 μg ml−1). Nanotubes were readily drug loaded but released the majority of the drug over 5 days. Direct administration of drug loaded nanotubes to human orthotopic breast tumors substantially reduced tumor growth and metastasis and outperformed i.v. administration at the equivalent dose. Overall, this nanotube templating platform is emerging as a facile route for the manufacture of poly(ethylene glycol) nanotubes
Neurotrophin-3-enhanced nerve regeneration selectively improves recovery of muscle fibers expressing myosin heavy chains 2b
The purpose of this study was to evaluate the effect of neurotrophin 3 (NT-3) enhanced nerve regeneration on the reinnervation of a target muscle. Muscle fibers can be classified according to their mechanical properties and myosin heavy chain (MHC) isoform composition. MHC1 containing slow-type and MHC2a or 2b fast-type fibers are normally distributed in a mosaic pattern, their phenotype dictated by motor innervation. After denervation, all fibers switch to fast-type MHC2b expression and also undergo atrophy resulting in loss of muscle mass. After regeneration, discrimination between fast and slow fibers returns, but the distribution and fiber size change according to the level of reinnervation. In this study, rat gastrocnemius muscles (ipsilateral and contralateral to the side of nerve injury) were collected up to 8 mo after nerve repair, with or without local delivery of NT-3. The phenotype changes of MHC1, 2a, and 2b were analyzed by immunohistochemistry, and fiber type proportion, diameter, and grouping were assessed by computerized image analysis. At 8 mo, the local delivery of NT-3 resulted in significant improvement in gastrocnemius muscle weight compared with controls (NT-3 group 47%, controls 39% weight of contralateral normal muscle; P < 0.05). NT-3 delivery resulted in a significant increase in the proportion (NT-3 43.3%, controls 35.7%; P < 0.05) and diameter (NT-3 87.8 μm, controls 70.8 μm; P < 0.05) of fast type 2b fibers after reinnervation. This effect was specific to type 2b fibers; no normalization was seen in other fiber types. This study indicates that NT-3–enhanced axonal regeneration has a beneficial effect on the motor target organ. Also, NT-3 may be specifically affecting a subset of motoneurons that determine type 2b muscle fiber phenotype. As NT-3 was topically applied to cut nerves, our data suggest a discriminating effect of the neurotrophin on neuro–muscular interaction. These results would imply that muscle fibers may be differentially responsive to other neurotrophic factors and indicate the potential clinical role of NT-3 in the prevention of muscle atrophy after nerve injury
Arterial oxygen content is precisely maintained by graded erythrocytotic responses in settings of high/normal serum iron levels, and predicts exercise capacity: an observational study of hypoxaemic patients with pulmonary arteriovenous malformations.
Oxygen, haemoglobin and cardiac output are integrated components of oxygen transport: each gram of haemoglobin transports 1.34 mls of oxygen in the blood. Low arterial partial pressure of oxygen (PaO2), and haemoglobin saturation (SaO2), are the indices used in clinical assessments, and usually result from low inspired oxygen concentrations, or alveolar/airways disease. Our objective was to examine low blood oxygen/haemoglobin relationships in chronically compensated states without concurrent hypoxic pulmonary vasoreactivity.165 consecutive unselected patients with pulmonary arteriovenous malformations were studied, in 98 cases, pre/post embolisation treatment. 159 (96%) had hereditary haemorrhagic telangiectasia. Arterial oxygen content was calculated by SaO2 x haemoglobin x 1.34/100.There was wide variation in SaO2 on air (78.5-99, median 95)% but due to secondary erythrocytosis and resultant polycythaemia, SaO2 explained only 0.1% of the variance in arterial oxygen content per unit blood volume. Secondary erythrocytosis was achievable with low iron stores, but only if serum iron was high-normal: Low serum iron levels were associated with reduced haemoglobin per erythrocyte, and overall arterial oxygen content was lower in iron deficient patients (median 16.0 [IQR 14.9, 17.4]mls/dL compared to 18.8 [IQR 17.4, 20.1]mls/dL, p<0.0001). Exercise tolerance appeared unrelated to SaO2 but was significantly worse in patients with lower oxygen content (p<0.0001). A pre-defined athletic group had higher Hb:SaO2 and serum iron:ferritin ratios than non-athletes with normal exercise capacity. PAVM embolisation increased SaO2, but arterial oxygen content was precisely restored by a subsequent fall in haemoglobin: 86 (87.8%) patients reported no change in exercise tolerance at post-embolisation follow-up.Haemoglobin and oxygen measurements in isolation do not indicate the more physiologically relevant oxygen content per unit blood volume. This can be maintained for SaO2 ≥78.5%, and resets to the same arterial oxygen content after correction of hypoxaemia. Serum iron concentrations, not ferritin, seem to predict more successful polycythaemic responses
Investigating A Dose Response Relationship between High Fat Diet Consumption and the Contractile Performance of Isolated Mouse Soleus, EDL and Diaphragm Muscles
PurposeRecent evidence has demonstrated an obesity-induced, skeletal muscle-specific reduction in contractile performance. The extent and magnitude of these changes in relation to total dose of high-fat diet consumption remains unclear. This study aimed to examine the dose–response relationship between a high-fat diet and isolated skeletal muscle contractility.Methods120 female CD1 mice were randomly assigned to either control group or groups receiving 2, 4, 8 or 12 weeks of a high-calorie diet (N = 24). At 20 weeks, soleus, EDL or diaphragm muscle was isolated (n = 8 in each case) and isometric force, work loop power output and fatigue resistance were measured.ResultsWhen analysed with respect to feeding duration, there was no effect of diet on the measured parameters prior to 8 weeks of feeding. Compared to controls, 8-week feeding caused a reduction in normalised power of the soleus, and 8- and 12-week feeding caused reduced normalised isometric force, power and fatigue resistance of the EDL. Diaphragm from the 12-week group produced lower normalised power, whereas 8- and 12-week groups produced significantly lower normalised isometric force. Correlation statistics indicated that body fat accumulation and decline in contractility will be specific to the individual and independent of the feeding duration.ConclusionThe data indicate that a high-fat diet causes a decline in muscle quality with specific contractile parameters being affected in each muscle. We also uniquely demonstrate that the amount of fat gain, irrespective of feeding duration, may be the main factor in reducing contractile performance
Functional and Biogenetical Heterogeneity of the Inner Membrane of Rat-Liver Mitochondria
Rat liver mitochondria were fragmented by a combined technique of swelling, shrinking, and sonication. Fragments of inner membrane were separated by density gradient centrifugation. They differed in several respects: electronmicroscopic appearance, phospholipid and cytochrome contents, electrophoretic behaviour of proteins and enzymatic activities.
Three types of inner membrane fractions were isolated. The first type is characterized by a high activity of metal chelatase, low activities of succinate-cytochrome c reductase and of glycerolphosphate dehydrogenase, as well as by a high phospholipid content and low contents of cytochromes aa3 and b.
The second type displays maximal activities of glycerolphosphate dehydrogenase and metal chelatase, but contains relatively little cytochromes and has low succinate-cytochrome c reductase activity.
The third type exhibits highest succinate-cytochrome c reductase activity, a high metal chelatase activity and highest cytochrome contents. However, this fraction was low in both glycerolphosphate dehydrogenase activity and phospholipid content. This fraction was also richest in the following enzyme activities: cytochrome oxidase, oligomycin-sensitive ATPase, proline oxidase, 3-hydroxybutyrate dehydrogenase and rotenone-sensitive NADH-cytochrome c reductase.
Amino acid incorporation in vitro and in vivo in the presence of cycloheximide occurs predominantly into inner membrane fractions from the second type.
These data suggest that the inner membrane is composed of differently organized parts, and that polypeptides synthesized by mitochondrial ribosomes are integrated into specific parts of the inner membrane
- …
