1,117 research outputs found

    The allochthonous material input in the trophodynamic system of the shelf sediments of the Gulf of Tigullio (Ligurian Sea, NW Mediterranean)

    Get PDF
    The organic allochthonous material input in the benthic system of a NW Mediterranean shelf area was studied using a three-pronged approach, focusing firstly on the evaluation of the sedimentary stable isotope ratios and organic matter (OM) composition, then on the OM recycling processes performed by the microbial organisms, and finally on the potential trophic relationships between the macrobenthic organisms. The highest allochthonous signal, indicating continental input, was observed within the 50-m isobath, while at the 80-m isobath the marine signal was higher, pointing to a rather low continental influence approximately 5 km from the shore. Heavier rainfall, often generating abrupt allochthonous inputs by river outfalls, led to a wider spread of fine sediment particles. Carbohydrates were the compounds that best represented the continental input and these compounds were associated with potential recycling activities by microbiota, pointing to the entry of these C-containing allochthonous materials into the microbial food web. The macrofaunal deposit-feeders used sedimentary OM characterised by a continental signature as a food source, although the isotopic ratios of the organisms also pointed to selective feeding on materials that had a marine signature, especially at our offshore sampling stations. Predators fed on deposit- or suspension-feeders, with a potential selection of the latter during the highest inputs of continental materials occurring in winter

    Risk Management in Magnetic Resonance: Failure Mode, Effects, and Criticality Analysis

    Get PDF
    The aim of the study was to perform a risk management procedure in "Magnetic Resonance Examination" process in order to identify the critical phases and sources of radiological errors and to identify potential improvement projects including procedures, tests, and checks to reduce the error occurrence risk. In this study we used the proactive analysis "Failure Mode Effects Criticality Analysis," a qualitative and quantitative risk management procedure; has calculated Priority Risk Index (PRI) for each activity of the process; have identified, on the PRI basis, the most critical activities and, for them, have defined improvement projects; and have recalculated the PRI after implementation of improvement projects for each activity. Time stop and audits are performed in order to control the new procedures. The results showed that the most critical tasks of "Magnetic Resonance Examination" process were the reception of the patient, the patient schedule drafting, the closing examination, and the organization of activities. Four improvement projects have been defined and executed. PRI evaluation after improvement projects implementation has shown that the risk decreased significantly following the implementation of procedures and controls defined in improvement projects, resulting in a reduction of the PRI between 43% and 100%

    Radiomic and Artificial Intelligence Analysis with Textural Metrics, Morphological and Dynamic Perfusion Features Extracted by Dynamic Contrast-Enhanced Magnetic Resonance Imaging in the Classification of Breast Lesions

    Get PDF
    The aim of the study was to estimate the diagnostic accuracy of textural, morpho- logical and dynamic features, extracted by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) images, by carrying out univariate and multivariate statistical analyses including artificial intelligence approaches. Methods: In total, 85 patients with known breast lesion were enrolled in this retrospective study according to regulations issued by the local Institutional Review Board. All patients underwent DCE-MRI examination. The reference standard was pathology from a surgical specimen for malignant lesions and pathology from a surgical specimen or fine needle aspiration cytology, core or Tru-Cut needle biopsy for benign lesions. In total, 91 samples of 85 patients were ana- lyzed. Furthermore, 48 textural metrics, 15 morphological and 81 dynamic parameters were extracted by manually segmenting regions of interest. Statistical analyses including univariate and multivari- ate approaches were performed: non-parametric Wilcoxon–Mann–Whitney test; receiver operating characteristic (ROC), linear classifier (LDA), decision tree (DT), k-nearest neighbors (KNN), and support vector machine (SVM) were utilized. A balancing approach and feature selection methods were used. Results: The univariate analysis showed low accuracy and area under the curve (AUC) for all considered features. Instead, in the multivariate textural analysis, the best performance (accuracy (ACC) = 0.78; AUC = 0.78) was reached with all 48 metrics and an LDA trained with balanced data. The best performance (ACC = 0.75; AUC = 0.80) using morphological features was reached with an SVM trained with 10-fold cross-variation (CV) and balanced data (with adaptive synthetic (ADASYN) function) and a subset of five robust morphological features (circularity, rectangularity, sphericity, gleaning and surface). The best performance (ACC = 0.82; AUC = 0.83) using dynamic features was reached with a trained SVM and balanced data (with ADASYN function). Conclusion: Multivariate analyses using pattern recognition approaches, including all morphological, textural and dynamic features, optimized by adaptive synthetic sampling and feature selection operations obtained the best results and showed the best performance in the discrimination of benign and malignant lesions

    Standardized Index of Shape (DCE-MRI) and Standardized Uptake Value (PET/CT): Two quantitative approaches to discriminate chemo-radiotherapy locally advanced rectal cancer responders under a functional profile.

    Get PDF
    PURPOSE: To investigate dynamic contrast enhanced-MRI (DCE-MRI) in the preoperative chemo-radiotherapy (CRT) assessment for locally advanced rectal cancer (LARC) compared to18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). METHODS: 75 consecutive patients with LARC were enrolled in a prospective study. DCE-MRI analysis was performed measuring SIS: linear combination of percentage change (Δ) of maximum signal difference (MSD) and wash-out slope (WOS). 18F-FDG PET/CT analysis was performed using SUV maximum (SUVmax). Tumor regression grade (TRG) were estimated after surgery. Non-parametric tests, receiver operating characteristic were evaluated. RESULTS: 55 patients (TRG1-2) were classified as responders while 20 subjects as non responders. ΔSIS reached sensitivity of 93%, specificity of 80% and accuracy of 89% (cut-off 6%) to differentiate responders by non responders, sensitivity of 93%, specificity of 69% and accuracy of 79% (cut-off 30%) to identify pathological complete response (pCR). Therapy assessment via ΔSUVmax reached sensitivity of 67%, specificity of 75% and accuracy of 70% (cut-off 60%) to differentiate responders by non responders and sensitivity of 80%, specificity of 31% and accuracy of 51% (cut-off 44%) to identify pCR. CONCLUSIONS: CRT response assessment by DCE-MRI analysis shows a higher predictive ability than 18F-FDG PET/CT in LARC patients allowing to better discriminate significant and pCR

    The PLASMONX Project for advanced beam physics experiments

    Get PDF
    The Project PLASMONX is well progressing into its design phase and has entered as well its second phase of procurements for main components. The project foresees the installation at LNF of a Ti:Sa laser system (peak power > 170 TW), synchronized to the high brightness electron beam produced by the SPARC photo-injector. The advancement of the procurement of such a laser system is reported, as well as the construction plans of a new building at LNF to host a dedicated laboratory for high intensity photon beam experiments (High Intensity Laser Laboratory). Several experiments are foreseen using this complex facility, mainly in the high gradient plasma acceleration field and in the field of mono- chromatic ultra-fast X-ray pulse generation via Thomson back-scattering. Detailed numerical simulations have been carried out to study the generation of tightly focused electron bunches to collide with laser pulses in the Thomson source: results on the emitted spectra of X-rays are presented
    corecore