76 research outputs found

    Regulatory components involved in cold tolerance of barley cells

    Get PDF
    Micro- and macroclimatic changes fundamentally determine growth rate, development, crop production and geographical distribution of plant species. The existence of successful defensive mechanisms against the damaging effects of low temperature is essential for survival and sufficient seed production of plants. In winter-type cereals cold acclimation process is activated by low temperature, and it leads to elevated level of resistance against harmful physiological effects of suboptimal temperature. One of the most important gene expression regulator units in this mechanism is the CBF-COR system. However, cold acclimation mechanism is a very complex phenomenon, the process is influenced by many factors, e.g. falling temperature, day length, spectral composition of irradiated light, as well as local and systemic internal signals. Because of this, realignment of the gene expression pattern connected to the cold acclimation mechanism and its phenotypical effects is very difficult to investigate excluding the influence of other factors with interfering action. Basic cellular and biochemical changes caused by only the low temperature, independently of another factors mentioned above are mainly undiscovered. Therefore, elemental cold response of the CBF-COR system was compared in seedlings and dark-grown, dedifferentiated, meristemoid callus cultures of winter barley. Detailed characteristics of CBF-COR induction and effects of cold-hardening were also studied in barley callus cultures at the gene expression, hormone composition and freezing tolerance levels in the presence or absence of Dicamba, the exogenous auxin analogue used in tissue cultivation. Our results suggest the presence of a basal, cold-responsive activation mechanism of CBF and COR genes with the highest influence on the evolvement of frost resistance, which is independent of the differentiated state of cells or chloroplast-related, light-induced and systemic signals. However, these factors seem to be required for reaching the maximum level of activation. The exogenous auxin analogue, Dicamba, seems to be rather a coinducer in this process, since it does not affect the initiation or the characteristic of the activation, only influences the magnitude of the response

    Dual Mode of the Saponin Aescin in Plant Protection: Antifungal Agent and Plant Defense Elicitor

    Get PDF
    Being natural plant antimicrobials, saponins have potential for use as biopesticides. Nevertheless, their activity in plant–pathogen interaction is poorly understood. We performed a comparative study of saponins' antifungal activities on important crop pathogens based on their effective dose (EC50) values. Among those saponins tested, aescin showed itself to be the strongest antifungal agent. The antifungal effect of aescin could be reversed by ergosterol, thus suggesting that aescin interferes with fungal sterols. We tested the effect of aescin on plant–pathogen interaction in two different pathosystems: Brassica napus versus (fungus) Leptosphaeria maculans and Arabidopsis thaliana versus (bacterium) Pseudomonas syringae pv tomato DC3000 (Pst DC3000). We analyzed resistance assays, defense gene transcription, phytohormonal production, and reactive oxygen species production. Aescin activated B. napus defense through induction of the salicylic acid pathway and oxidative burst. This defense response led finally to highly efficient plant protection against L. maculans that was comparable to the effect of fungicides. Aescin also inhibited colonization of A. thaliana by Pst DC3000, the effect being based on active elicitation of salicylic acid (SA)-dependent immune mechanisms and without any direct antibacterial effect detected. Therefore, this study brings the first report on the ability of saponins to trigger plant immune responses. Taken together, aescin in addition to its antifungal properties activates plant immunity in two different plant species and provides SA-dependent resistance against both fungal and bacterial pathogens

    Multi-hormonal analysis and aquaporins regulation reveal new insights on drought tolerance in grapevine

    Get PDF
    Disentangling the factors that foster the tolerance to water stress in plants could provide great benefits to crop productions. In a two-year experiment, two new PIWI (fungus resistant) grapevine varieties, namely Merlot Kanthus and Sauvignon Kretos (Vitis hybrids), grown in the field, were subjected to two different water regimes: weekly irrigated (IR) or not irrigated (NIR) for two months during the summer. The two varieties exhibited large differences in terms of performance under water-limiting conditions. In particular, Merlot Kanthus strongly decreased stem water potential (Ψs) under water shortage and Sauvignon Kretos maintained higher Ψs values accompanied by generally high stomatal conductance and net carbon assimilation, regardless of the treatment. We hypothesized differences in the hormonal profile that mediate most of the plant responses to stresses or in the regulation of the aquaporins that control the water transport in the leaves. In general, substantial differences were found in the abundance of different hormonal classes, with Merlot Kanthus reporting higher concentrations of cytokinins while Sauvignon Kretos higher concentrations of auxins, jasmonate and salicylic acid. Interestingly, under water stress conditions ABA modulation appeared similar between the two cultivars, while other hormones were differently modulated between the two varieties. Regarding the expression of aquaporin encoding genes, Merlot Kanthus showed a significant downregulation of VvPIP2;1 and VvTIP2;1 in leaves exposed to water stress. Both genes have probably a role in influencing leaf conductance, and VvTIP2;1 has been correlated with stomatal conductance values. This evidence suggests that the two PIWI varieties are characterized by different behaviour in response to drought. Furthermore, the findings of the study may be generalized, suggesting the involvement of a complex hormonal cross-talk and aquaporins in effectively influencing plant performance under water shortage

    Auxin transport at cellular level: new insights supported by mathematical modelling

    Get PDF
    The molecular basis of cellular auxin transport is still not fully understood. Although a number of carriers have been identified and proved to be involved in auxin transport, their regulation and possible activity of as yet unknown transporters remain unclear. Nevertheless, using single-cell-based systems it is possible to track the course of auxin accumulation inside cells and to specify and quantify some auxin transport parameters. The synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene-1-acetic acid (NAA) are generally considered to be suitable tools for auxin transport studies because they are transported specifically via either auxin influx or efflux carriers, respectively. Our results indicate that NAA can be metabolized rapidly in tobacco BY-2 cells. The predominant metabolite has been identified as NAA glucosyl ester and it is shown that all NAA metabolites were retained inside the cells. This implies that the transport efficiency of auxin efflux transporters is higher than previously assumed. By contrast, the metabolism of 2,4-D remained fairly weak. Moreover, using data on the accumulation of 2,4-D measured in the presence of auxin transport inhibitors, it is shown that 2,4-D is also transported by efflux carriers. These results suggest that 2,4-D is a promising tool for determining both auxin influx and efflux activities. Based on the accumulation data, a mathematical model of 2,4-D transport at a single-cell level is proposed. Optimization of the model provides estimates of crucial transport parameters and, together with its validation by successfully predicting the course of 2,4-D accumulation, it confirms the consistency of the present concept of cellular auxin transport

    A Glyphosate-Based Herbicide in Soil Differentially Affects Hormonal Homeostasis and Performance of Non-target Crop Plants

    Get PDF
    Glyphosate is the most widely used herbicide with a yearly increase in global application. Recent studies report glyphosate residues from diverse habitats globally where the effect on non-target plants are still to be explored. Glyphosate disrupts the shikimate pathway which is the basis for several plant metabolites. The central role of phytohormones in regulating plant growth and responses to abiotic and biotic environment has been ignored in studies examining the effects of glyphosate residues on plant performance and trophic interactions. We studied interactive effects of glyphosate-based herbicide (GBH) residues and phosphate fertilizer in soil on the content of main phytohormones, their precursors and metabolites, as well as on plant performance and herbivore damage, in three plant species, oat (Avena sativa), potato (Solanum tuberosum) and strawberry (Fragaria x ananassa). Plant hormonal responses to GBH residues were highly species-specific. Potato responded to GBH soil treatment with an increase in stress-related phytohormones abscisic acid, indole-3-acetic acid and jasmonic acid but a decrease in cytokinin ribosides and cytokinin-O-glycosides. GBH residues in combination with phosphate in soil increased aboveground biomass of potato plants and the concentration of the auxin phenylacetic acid but decreased phaseic acid and cytokinin ribosides and O-glycosides. Chorsimate-derived compounds (indole-3-acetic acid, phenylacetic acid and benzoic acid) as well as herbivore damage decreased in oat, when growing in GBH-treated soil but concentrations of the cytokinin dihydrozeatin and cytokinin ribosides increased. In strawberry plants, phosphate treatment was associated with an elevation of auxin (indole-3-acetic acid) and the cytokinin trans-zeatin, while decreasing concentrations of the auxin phenylacetic acid and cytokinin dihydrozeatin was observed in the case of GBH treatment. Our results demonstrate that ubiquitous herbicide residues have multifaceted consequences by modulating the hormonal equilibrium of plants, which can have cascading effects on trophic interactions.</p

    Phytohormone Profling of Malus domestica and Chenopodium murale Hairy Root Exudate: Association with Allelopathic Efects

    Get PDF
    Compounds exuded from roots play a key role in regulating plant allelopathic interactions. However, phytochormone profling of root exudates and their contribution to an overall allelochemical activity of specifc plant species is neglected topic in allelochemical research. Hairy root growth media of two diferent species, the fruit tree species Malus×domestica Borkh. and the herbaceous weed species Chenopodium murale L. were collected and analyzed by high-performance liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS). We found that most of the phytohormones exuded by the hairy roots of C. murale and M. domestica were associated with the acidic fraction (96.8% and 98.9%, respectively), including 2-oxindole-3-acetic acid, phenylacetic acid, salicylic acid (SA), benzoic acid (BzA), and abscisic acid, with SA and BzA being the most abundant, while those associated with the basic fraction, including cytokinins and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, accounted for only 1% of the plant growth substances detected in both species. Exogenous application of 0.2 µM SA, which was released from the hairy roots of C. murale and accumulated in the culture media for four weeks, signifcantly impaired hairy root growth of M. domestica and also shoot and root growth of Arabidopsis seedlings. The disruptive efect of 0.2 µM SA on the membrane potential of M. domestica hairy root and Arabidopsis root cells was determined. The data obtained could be useful for planning further studies aimed at clarifying the contribution and role of exuded phytohormones to the overall allelopathic potential of these two plant speciesThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00344-024-11328-

    Heat Stress Targeting Individual Organs Reveals the Central Role of Roots and Crowns in Rice Stress Responses

    Get PDF
    Inter-organ communication and the heat stress (HS; 45°C, 6 h) responses of organs exposed and not directly exposed to HS were evaluated in rice (Oryza sativa) by comparing the impact of HS applied either to whole plants, or only to shoots or roots. Whole-plant HS reduced photosynthetic activity (Fv/Fm and QY_Lss), but this effect was alleviated by prior acclimation (37°C, 2 h). Dynamics of HSFA2d, HSP90.2, HSP90.3, and SIG5 expression revealed high protection of crowns and roots. Additionally, HSP26.2 was strongly expressed in leaves. Whole-plant HS increased levels of jasmonic acid (JA) and cytokinin cis-zeatin in leaves, while up-regulating auxin indole-3-acetic acid and down-regulating trans-zeatin in leaves and crowns. Ascorbate peroxidase activity and expression of alternative oxidases (AOX) increased in leaves and crowns. HS targeted to leaves elevated levels of JA in roots, cis-zeatin in crowns, and ascorbate peroxidase activity in crowns and roots. HS targeted to roots increased levels of abscisic acid and auxin in leaves and crowns, cis-zeatin in leaves, and JA in crowns, while reducing trans-zeatin levels. The weaker protection of leaves reflects the growth strategy of rice. HS treatment of individual organs induced changes in phytohormone levels and antioxidant enzyme activity in non-exposed organs, in order to enhance plant stress tolerance
    corecore