51 research outputs found

    Gene profiling suggests a common evolution of bladder cancer subtypes

    Get PDF
    Abstract Background Bladder cancer exists as several distinct subtypes, including urothelial carcinoma (UCa), squamous cell carcinoma (SCCa), adenocarcinoma and small cell carcinoma. These entities, despite showing distinct morphology and clinical behavior, arise from the urothelial lining and are often accompanied by similar precursor/in situ findings. The relationship between these subtypes has not been explored in detail. Methods We compared gene expression analysis of the two most common subtypes of bladder cancer, UCa (n = 10) and SCCa (n = 9), with an additional comparison to normal urothelium from non-cancer patients (n = 8) using Affymetrix GeneChip Human genome arrays (Affymetrix, Santa Clara, CA). The results were stratified by supervised and unsupervised clustering analysis, as well as by overall fold change in gene expression. Results When compared to normal urothelium, UCa showed differential expression of 155 genes using a 5-fold cut-off. Examples of differentially regulated genes included topoisomerases, cancer-related transcription factors and cell cycle mediators. A second comparison of normal urothelium to SCCa showed differential expression of 503 genes, many of which were related to squamous-specific morphology (desmosomal complex, intermediate filaments present within squamous epithelium, squamous cornifying proteins, and molecules upregulated in squamous carcinomas from other anatomic sites). When compared, 137 genes were commonly dysregulated in both UCa and SCCa as compared to normal urothelium. All dysregulated genes in UCa were shared in common with SCCa, with the exception of only 18 genes. Supervised clustering analysis yielded correct classification of lesions in 26/27 (96%) of cases and unsupervised clustering analysis yielded correct classification in 25/27 (92.6%) of cases. Conclusions The results from this analysis suggest that bladder SCCa shares a significant number of gene expression changes with conventional UCa, but also demonstrates an additional set of alterations that is unique to this entity that defines the squamous phenotype. The similarity in deregulated gene products suggests that SCCa may be a much more closely related entity at the molecular level to conventional UCa than previously hypothesized

    Parkinson’s Disease-related Circulating microRNA Biomarkers - a Validation Study

    Get PDF
    Parkinson’s disease (PD) is the second most common neurodegenerative disease. One of the major challenges in studying this progressive neurological disorder is to identify and develop biomarkers for early detection. Recently, several blood-based microRNA (miRNA) biomarkers for PD have been reported. However, follow-up studies with new, independent cohorts have been rare. Previously, we identified a panel of four circulating miRNA biomarkers for PD (miR-1826, miR-450b-3p, miR-505, and miR-626) with biomarker performance of 91% sensitivity and 100% specificity. However, the expression of miR-450b-3p could not be detected in a new, independent validation set. In our current study, we improved the detection power by including a non-biased pre-amplification step in quantitative real-time PCR (qRT-PCR) and reevaluated the biomarker performance. We found the panel of four PD-related miRNAs achieved the predictive power of 83% sensitivity and 75% specificity in our validation set. This is the first biomarker validation study of PD which showed reproducibility and robustness of plasma-based circulating miRNAs as molecular biomarkers and qRT-PCR as potential diagnostic assay

    Parkinson’s Disease-related Circulating microRNA Biomarkers - a Validation Study

    Get PDF
    Parkinson’s disease (PD) is the second most common neurodegenerative disease. One of the major challenges in studying this progressive neurological disorder is to identify and develop biomarkers for early detection. Recently, several blood-based microRNA (miRNA) biomarkers for PD have been reported. However, follow-up studies with new, independent cohorts have been rare. Previously, we identified a panel of four circulating miRNA biomarkers for PD (miR-1826, miR-450b-3p, miR-505, and miR-626) with biomarker performance of 91% sensitivity and 100% specificity. However, the expression of miR-450b-3p could not be detected in a new, independent validation set. In our current study, we improved the detection power by including a non-biased pre-amplification step in quantitative real-time PCR (qRT-PCR) and reevaluated the biomarker performance. We found the panel of four PD-related miRNAs achieved the predictive power of 83% sensitivity and 75% specificity in our validation set. This is the first biomarker validation study of PD which showed reproducibility and robustness of plasma-based circulating miRNAs as molecular biomarkers and qRT-PCR as potential diagnostic assay

    Simultaneous real-time measurement of EEG/EMG and L-glutamate in mice: A biosensor study of neuronal activity during sleep

    Get PDF
    We report on electroencephalograph (EEG) and electromyograph (EMG) measurements concurrently with real-time changes in L-glutamate concentration. These data reveal a link between sleep state and extracellular neurotransmitter changes in a freely-moving (tethered) mouse. This study reveals, for the first time in mice, that the extracellular L-glutamate concentration in the pre-frontal cortex (PFC) increases during periods of extended wakefulness, decreases during extended sleep episodes and spikes during periods of REM sleep. Individual sleep epochs (10 s in duration) were scored as wake, slow-wave (SW) sleep or rapid eye movement (REM) sleep, and then correlated as a function of time with measured changes in L-glutamate concentrations. The observed L-glutamate levels show a statistically significant increase of 0.86 ± 0.26 μM (p < 0.05) over 37 wake episodes recorded from all mice (n = 6). Over the course of 49 measured sleep periods longer than 15 min, L-glutamate concentrations decline by a similar amount (0.88 ± 0.37 μM, p < 0.08). The analysis of 163 individual REM sleep episodes greater than one min in length across all mice (n = 6) demonstrates a significant rise in L-glutamate levels as compared to the 1 min preceding REM sleep onset (RM-ANOVA, DF = 20, F = 6.458, p < 0.001). The observed rapid changes in L-glutamate concentration during REM sleep last only between 1 and 3 min. The approach described can also be extended to other regions of the brain which are hypothesized to play a role in sleep. This study highlights the importance of obtaining simultaneous measurements of neurotransmitter levels in conjunction with sleep markers to help elucidate the underlying physiological and ultimately the genetic components of sleep

    Somatic Pairing of Chromosome 19 in Renal Oncocytoma Is Associated with Deregulated ELGN2-Mediated Oxygen-Sensing Response

    Get PDF
    Chromosomal abnormalities, such as structural and numerical abnormalities, are a common occurrence in cancer. The close association of homologous chromosomes during interphase, a phenomenon termed somatic chromosome pairing, has been observed in cancerous cells, but the functional consequences of somatic pairing have not been established. Gene expression profiling studies revealed that somatic pairing of chromosome 19 is a recurrent chromosomal abnormality in renal oncocytoma, a neoplasia of the adult kidney. Somatic pairing was associated with significant disruption of gene expression within the paired regions and resulted in the deregulation of the prolyl-hydroxylase ELGN2, a key protein that regulates the oxygen-dependent degradation of hypoxia-inducible factor (HIF). Overexpression of ELGN2 in renal oncocytoma increased ubiquitin-mediated destruction of HIF and concomitantly suppressed the expression of several HIF-target genes, including the pro-death BNIP3L gene. The transcriptional changes that are associated with somatic pairing of chromosome 19 mimic the transcriptional changes that occur following DNA amplification. Therefore, in addition to numerical and structural chromosomal abnormalities, alterations in chromosomal spatial dynamics should be considered as genomic events that are associated with tumorigenesis. The identification of EGLN2 as a significantly deregulated gene that maps within the paired chromosome region directly implicates defects in the oxygen-sensing network to the biology of renal oncocytoma

    Deficiency of FLCN in Mouse Kidney Led to Development of Polycystic Kidneys and Renal Neoplasia

    Get PDF
    The Birt–Hogg–Dubé (BHD) disease is a genetic cancer syndrome. The responsible gene, BHD, has been identified by positional cloning and thought to be a novel tumor suppressor gene. BHD mutations cause many types of diseases including renal cell carcinomas, fibrofolliculomas, spontaneous pneumothorax, lung cysts, and colonic polyps/cancers. By combining Gateway Technology with the Ksp-Cre gene knockout system, we have developed a kidney-specific BHD knockout mouse model. BHDflox/flox/Ksp-Cre mice developed enlarged kidneys characterized by polycystic kidneys, hyperplasia, and cystic renal cell carcinoma. The affected BHDflox/flox/Ksp-Cre mice died of renal failure at approximate three weeks of age, having blood urea nitrogen levels over tenfold higher than those of BHD flox/+/Ksp-Cre and wild-type littermate controls. We further demonstrated that these phenotypes were caused by inactivation of BHD and subsequent activation of the mTOR pathway. Application of rapamycin, which inhibits mTOR activity, to the affected mice led to extended survival and inhibited further progression of cystogenesis. These results provide a correlation of kidney-targeted gene inactivation with renal carcinoma, and they suggest that the BHD product FLCN, functioning as a cyst and tumor suppressor, like other hamartoma syndrome–related proteins such as PTEN, LKB1, and TSC1/2, is a component of the mTOR pathway, constituting a novel FLCN-mTOR signaling branch that regulates cell growth/proliferation

    The influence of obesity-related factors in the etiology of renal cell carcinoma-A mendelian randomization study.

    Get PDF
    BACKGROUND: Several obesity-related factors have been associated with renal cell carcinoma (RCC), but it is unclear which individual factors directly influence risk. We addressed this question using genetic markers as proxies for putative risk factors and evaluated their relation to RCC risk in a mendelian randomization (MR) framework. This methodology limits bias due to confounding and is not affected by reverse causation. METHODS AND FINDINGS: Genetic markers associated with obesity measures, blood pressure, lipids, type 2 diabetes, insulin, and glucose were initially identified as instrumental variables, and their association with RCC risk was subsequently evaluated in a genome-wide association study (GWAS) of 10,784 RCC patients and 20,406 control participants in a 2-sample MR framework. The effect on RCC risk was estimated by calculating odds ratios (ORSD) for a standard deviation (SD) increment in each risk factor. The MR analysis indicated that higher body mass index increases the risk of RCC (ORSD: 1.56, 95% confidence interval [CI] 1.44-1.70), with comparable results for waist-to-hip ratio (ORSD: 1.63, 95% CI 1.40-1.90) and body fat percentage (ORSD: 1.66, 95% CI 1.44-1.90). This analysis further indicated that higher fasting insulin (ORSD: 1.82, 95% CI 1.30-2.55) and diastolic blood pressure (DBP; ORSD: 1.28, 95% CI 1.11-1.47), but not systolic blood pressure (ORSD: 0.98, 95% CI 0.84-1.14), increase the risk for RCC. No association with RCC risk was seen for lipids, overall type 2 diabetes, or fasting glucose. CONCLUSIONS: This study provides novel evidence for an etiological role of insulin in RCC, as well as confirmatory evidence that obesity and DBP influence RCC risk

    Genetic Variants Related to Longer Telomere Length are Associated with Increased Risk of Renal Cell Carcinoma.

    Get PDF
    BACKGROUND: Relative telomere length in peripheral blood leukocytes has been evaluated as a potential biomarker for renal cell carcinoma (RCC) risk in several studies, with conflicting findings. OBJECTIVE: We performed an analysis of genetic variants associated with leukocyte telomere length to assess the relationship between telomere length and RCC risk using Mendelian randomization, an approach unaffected by biases from temporal variability and reverse causation that might have affected earlier investigations. DESIGN, SETTING, AND PARTICIPANTS: Genotypes from nine telomere length-associated variants for 10 784 cases and 20 406 cancer-free controls from six genome-wide association studies (GWAS) of RCC were aggregated into a weighted genetic risk score (GRS) predictive of leukocyte telomere length. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Odds ratios (ORs) relating the GRS and RCC risk were computed in individual GWAS datasets and combined by meta-analysis. RESULTS AND LIMITATIONS: Longer genetically inferred telomere length was associated with an increased risk of RCC (OR=2.07 per predicted kilobase increase, 95% confidence interval [CI]:=1.70-2.53, p0.5) with GWAS-identified RCC risk variants (rs10936599 and rs9420907) from the telomere length GRS; despite this exclusion, a statistically significant association between the GRS and RCC risk persisted (OR=1.73, 95% CI=1.36-2.21, p<0.0001). Exploratory analyses for individual histologic subtypes suggested comparable associations with the telomere length GRS for clear cell (N=5573, OR=1.93, 95% CI=1.50-2.49, p<0.0001), papillary (N=573, OR=1.96, 95% CI=1.01-3.81, p=0.046), and chromophobe RCC (N=203, OR=2.37, 95% CI=0.78-7.17, p=0.13). CONCLUSIONS: Our investigation adds to the growing body of evidence indicating some aspect of longer telomere length is important for RCC risk. PATIENT SUMMARY: Telomeres are segments of DNA at chromosome ends that maintain chromosomal stability. Our study investigated the relationship between genetic variants associated with telomere length and renal cell carcinoma risk. We found evidence suggesting individuals with inherited predisposition to longer telomere length are at increased risk of developing renal cell carcinoma
    corecore