110 research outputs found

    Infrared vibrational spectroscopy: a rapid and novel diagnostic and monitoring tool for cystinuria

    Get PDF
    Cystinuria is the commonest inherited cause of nephrolithiasis (~1% in adults; ~6% in children) and is the result of impaired cystine reabsorption in the renal proximal tubule. Cystine is poorly soluble in urine with a solubility of ~1 mM and can readily form microcrystals that lead to cystine stone formation, especially at low urine pH. Diagnosis of cystinuria is made typically by ion-exchange chromatography (IEC) detection and quantitation, which is slow, laboursome and costly. More rapid and frequent monitoring of urinary cystine concentration would significantly improve the diagnosis and clinical management of cystinuria. We used attenuated total reflection - Fourier transform infrared spectroscopy (ATR-FTIR) to detect and quantitate insoluble cystine in 22 cystinuric and 5 healthy control urine samples. Creatinine concentration was also determined by ATR-FTIR to adjust for urinary concentration/dilution. Urine was centrifuged, the insoluble fraction re-suspended in 5 ΌL water and dried on the ATR prism. Cystine was quantitated using its 1296 cm−1 absorption band and levels matched with parallel measurements made using IEC. ATR-FTIR afforded a rapid and inexpensive method of detecting and quantitating insoluble urinary cystine. This proof-of-concept study provides a basis for developing a high-throughput, cost-effective diagnostic method for cystinuria, and for point-of-care clinical monitoring

    Dietary carotenoid-rich oil supplementation improves exercise-induced anisocytosis in runners: influences of haptoglobin, MnSOD (Val9Ala), CAT (21A/T) and GPX1 (Pro198Leu) gene polymorphisms in dilutional pseudoanemia (sports anemia)

    Get PDF
    Physical training induces beneficial adaptation, whereas exhaustive exercises increase reactive oxygen-species generation, thereby causing oxidative damage in plasma and erythrocytes, fractions susceptible to lipid peroxidation. Pequi (Caryocar brasiliense Camb.) is a Brazilian Cerrado fruit containing a carotenoid-rich oil. The aim was to investigate the effects of pequi-oil on exercise-induced oxidative damage in plasma and erythrocytes, after running in the same environment and undergoing weekly training under the same conditions as to type, intensity and length. Evaluations were accomplished after outdoor running on flat land before and after ingestion of 400 mg pequi-oil capsules for 14 days. Blood samples were taken after running and submitted to TBARS assay and erythrogram analysis. Haptoglobin, MnSOD (Val9Ala), CAT (21A/T) and GPX1 (Pro198Leu) gene polymorphisms were priorly investigated, so as to estimate genetic influence The reduction in erythrocytes, hemoglobin and hematocrit after pequi-oil treatment was notably associated with higher plasma expansion. Except for MCHC (mean corpuscular hemoglobin concentration) and RDW (red cell distribution width), the results were influenced by the polymorphisms studied. The best response to pequi-oil was presented by MnSOD Val/Val, CAT AA or AT genotypes and the GPX1 Pro allele. The significantly lower RDW and higher MHCH values were related to pequi-oil protective effects. Pequi oil, besides possessing other nutritional properties, showed protective blood effects

    Multimodal microscopy for automated histologic analysis of prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prostate cancer is the single most prevalent cancer in US men whose gold standard of diagnosis is histologic assessment of biopsies. Manual assessment of stained tissue of all biopsies limits speed and accuracy in clinical practice and research of prostate cancer diagnosis. We sought to develop a fully-automated multimodal microscopy method to distinguish cancerous from non-cancerous tissue samples.</p> <p>Methods</p> <p>We recorded chemical data from an unstained tissue microarray (TMA) using Fourier transform infrared (FT-IR) spectroscopic imaging. Using pattern recognition, we identified epithelial cells without user input. We fused the cell type information with the corresponding stained images commonly used in clinical practice. Extracted morphological features, optimized by two-stage feature selection method using a minimum-redundancy-maximal-relevance (mRMR) criterion and sequential floating forward selection (SFFS), were applied to classify tissue samples as cancer or non-cancer.</p> <p>Results</p> <p>We achieved high accuracy (area under ROC curve (AUC) >0.97) in cross-validations on each of two data sets that were stained under different conditions. When the classifier was trained on one data set and tested on the other data set, an AUC value of ~0.95 was observed. In the absence of IR data, the performance of the same classification system dropped for both data sets and between data sets.</p> <p>Conclusions</p> <p>We were able to achieve very effective fusion of the information from two different images that provide very different types of data with different characteristics. The method is entirely transparent to a user and does not involve any adjustment or decision-making based on spectral data. By combining the IR and optical data, we achieved high accurate classification.</p

    A Fragment of the LG3 Peptide of Endorepellin Is Present in the Urine of Physically Active Mining Workers: A Potential Marker of Physical Activity

    Get PDF
    Biomarker analysis has been implemented in sports research in an attempt to monitor the effects of exertion and fatigue in athletes. This study proposed that while such biomarkers may be useful for monitoring injury risk in workers, proteomic approaches might also be utilised to identify novel exertion or injury markers. We found that urinary urea and cortisol levels were significantly elevated in mining workers following a 12 hour overnight shift. These levels failed to return to baseline over 24 h in the more active maintenance crew compared to truck drivers (operators) suggesting a lack of recovery between shifts. Use of a SELDI-TOF MS approach to detect novel exertion or injury markers revealed a spectral feature which was associated with workers in both work categories who were engaged in higher levels of physical activity. This feature was identified as the LG3 peptide, a C-terminal fragment of the anti-angiogenic/anti-tumourigenic protein endorepellin. This finding suggests that urinary LG3 peptide may be a biomarker of physical activity. It is also possible that the activity mediated release of LG3/endorepellin into the circulation may represent a biological mechanism for the known inverse association between physical activity and cancer risk/survival

    Sample treatment for tissue proteomics in cancer, toxicology, and forensics

    Get PDF
    Since the birth of proteomics science in the 1990, the number of applications and of sample preparation methods has grown exponentially, making a huge contribution to the knowledge in life science disciplines. Continuous improvements in the sample treatment strategies unlock and reveal the fine details of disease mechanisms, drug potency, and toxicity as well as enable new disciplines to be investigated such as forensic science. This chapter will cover the most recent developments in sample preparation strategies for tissue proteomics in three areas, namely, cancer, toxicology, and forensics, thus also demonstrating breath of application within the domain of health and well-being, pharmaceuticals, and secure societies. In particular, in the area of cancer (human tumor biomarkers), the most efficient and multi-informative proteomic strategies will be covered in relation to the subsequent application of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid extraction surface analysis (LESA), due to their ability to provide molecular localization of tumor biomarkers albeit with different spatial resolution. With respect to toxicology, methodologies applied in toxicoproteomics will be illustrated with examples from its use in two important areas: the study of drug-induced liver injury (DILI) and studies of effects of chemical and environmental insults on skin, i.e., the effects of irritants, sensitizers, and ionizing radiation. Within this chapter, mainly tissue proteomics sample preparation methods for LC-MS/MS analysis will be discussed as (i) the use of LC-MS/MS is majorly represented in the research efforts of the bioanalytical community in this area and (ii) LC-MS/MS still is the gold standard for quantification studies. Finally, the use of proteomics will also be discussed in forensic science with respect to the information that can be recovered from blood and fingerprint evidence which are commonly encountered at the scene of the crime. The application of proteomic strategies for the analysis of blood and fingerprints is novel and proteomic preparation methods will be reported in relation to the subsequent use of mass spectrometry without any hyphenation. While generally yielding more information, hyphenated methods are often more laborious and time-consuming; since forensic investigations need quick turnaround, without compromising validity of the information, the prospect to develop methods for the application of quick forensic mass spectrometry techniques such as MALDI-MS (in imaging or profiling mode) is of great interest

    Morpho-spectral imaging in the biosciences

    No full text
    [[sponsorship]]物理研究所[[note]]ć·Čć‡ș版;[SCI];æœ‰ćŻ©æŸ„ćˆ¶ćșŠ;ć…·ä»ŁèĄšæ€§[[note]]http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Drexel&SrcApp=hagerty_opac&KeyRecord=1618-2642&DestApp=JCR&RQ=IF_CAT_BOXPLO
    • 

    corecore