450 research outputs found
Incoherence of Bose-Einstein condensates at supersonic speeds due to quantum noise
We calculate the effect of quantum noise in supersonic transport of
Bose-Einstein condensates. When an obstacle obstructs the flow of atoms,
quantum fluctuations cause atoms to be scattered incoherently into random
directions. This suppresses the propagation of Cherenkov radiation, creating
quantum turbulence and a crescent of incoherent atoms around the obstacle. We
observe similar dynamics if the BEC is stirred by a laser beam: crescents of
incoherent atoms are emitted from the laser's turning-points. Finally, we
investigate supersonic flow through a disordered potential, and find that the
quantum fluctuations generate an accumulation of incoherent atoms as the
condensate enters the disorder.Comment: 6 pages, 5 figure
An Optically Plugged Quadrupole Trap for Bose-Einstein Condensates
We created sodium Bose-Einstein condensates in an optically plugged
quadrupole magnetic trap (OPT). A focused, 532nm laser beam repelled atoms from
the coil center where Majorana loss is significant. We produced condensates of
up to atoms, a factor of 60 improvement over previous work [1],
a number comparable to the best all-magnetic traps, and transferred up to atoms into a purely optical trap. Due to the tight axial
confinement and azimuthal symmetry of the quadrupole coils, the OPT shows
promise for creating Bose-Einstein condensates in a ring geometry
Bose-Einstein Condensates in Spin-Orbit Coupled Optical Lattices: Flat Bands and Superfluidity
Recently spin-orbit (SO) coupled superfluids in free space or harmonic traps
have been extensively studied, motivated by the recent experimental realization
of SO coupling for Bose-Einstein condensates (BEC). However, the rich physics
of SO coupled BEC in optical lattices has been largely unexplored. In this
paper, we show that in suitable parameter region the lowest Bloch state forms
an isolated flat band in a one dimensional (1D) SO coupled optical lattice,
which thus provides an experimentally feasible platform for exploring the
recently celebrated topological flat band physics in lattice systems. We show
that the flat band is preserved even with the mean field interaction in BEC. We
investigate the superfluidity of the BEC in SO coupled lattices through
dynamical and Landau stability analysis, and show that the BEC is stable on the
whole flat band.Comment: 5 pages, 4 figures, to appear in Phys. Rev.
Reconstruction of the phase of matter-wave fields using a momentum resolved cross-correlation technique
We investigate the potential of the so-called XFROG cross-correlation
technique originally developed for ultrashort laser pulses for the recovery of
the amplitude and phase of the condensate wave function of a Bose-Einstein
condensate. Key features of the XFROG method are its high resolution,
versatility and stability against noise and some sources of systematic errors.
After showing how an analogue of XFROG can be realized for Bose-Einstein
condensates, we illustrate its effectiveness in determining the amplitude and
phase of the wave function of a vortex state. The impact of a reduction of the
number of measurements and of typical sources of noise on the field
reconstruction are also analyzed.Comment: 7 pages; 9 figures; article with higher resolution figures available
from author
Theory of Nonlinear Matter Waves in Optical Lattices
We consider several effects of the matter wave dynamics which can be observed
in Bose-Einstein condensates embedded into optical lattices. For low-density
condensates we derive approximate evolution equations, the form of which
depends on relation among the main spatial scales of the system. Reduction of
the Gross-Pitaevskii equation to a lattice model (the tight-binding
approximation) is also presented. Within the framework of the obtained models
we consider modulational instability of the condensate, solitary and periodic
matter waves, paying special attention to different limits of the solutions,
i.e. to smooth movable gap solitons and to strongly localized discrete modes.
We also discuss how the Feshbach resonance, a linear force, and lattice defects
affect the nonlinear matter waves.Comment: Modern Physics Letters B (invited brief review), 25 pages, 9 figure
Impurity in a Bose-Einstein condensate in a double well
We compare and contrast the mean-field and many-body properties of a
Bose-Einstein condensate trapped in a double well potential with a single
impurity atom. The mean-field solutions display a rich structure of
bifurcations as parameters such as the boson-impurity interaction strength and
the tilt between the two wells are varied. In particular, we study a pitchfork
bifurcation in the lowest mean-field stationary solution which occurs when the
boson-impurity interaction exceeds a critical magnitude. This bifurcation,
which is present for both repulsive and attractive boson-impurity interactions,
corresponds to the spontaneous formation of an imbalance in the number of
particles between the two wells. If the boson-impurity interaction is large,
the bifurcation is associated with the onset of a Schroedinger cat state in the
many-body ground state. We calculate the coherence and number fluctuations
between the two wells, and also the entanglement entropy between the bosons and
the impurity. We find that the coherence can be greatly enhanced at the
bifurcation.Comment: 19 pages, 17 figures. The second version contains minor corrections
and some better figures (thicker lines
Dissipative Transport of a Bose-Einstein Condensate
We investigate the effects of impurities, either correlated disorder or a
single Gaussian defect, on the collective dipole motion of a Bose-Einstein
condensate of Li in an optical trap. We find that this motion is damped at
a rate dependent on the impurity strength, condensate center-of-mass velocity,
and interatomic interactions. Damping in the Thomas-Fermi regime depends
universally on the disordered potential strength scaled to the condensate
chemical potential and the condensate velocity scaled to the peak speed of
sound. The damping rate is comparatively small in the weakly interacting
regime, and the damping in this case is accompanied by strong condensate
fragmentation. \textit{In situ} and time-of-flight images of the atomic cloud
provide evidence that this fragmentation is driven by dark soliton formation.Comment: 14 pages, 20 figure
Coherence properties of the two-dimensional Bose-Einstein condensate
We present a detailed finite-temperature Hartree-Fock-Bogoliubov (HFB)
treatment of the two-dimensional trapped Bose gas. We highlight the numerical
methods required to obtain solutions to the HFB equations within the Popov
approximation, the derivation of which we outline. This method has previously
been applied successfully to the three-dimensional case and we focus on the
unique features of the system which are due to its reduced dimensionality.
These can be found in the spectrum of low-lying excitations and in the
coherence properties. We calculate the Bragg response and the coherence length
within the condensate in analogy with experiments performed in the
quasi-one-dimensional regime [Richard et al., Phys. Rev. Lett. 91, 010405
(2003)] and compare to results calculated for the one-dimensional case. We then
make predictions for the experimental observation of the quasicondensate phase
via Bragg spectroscopy in the quasi-two-dimensional regime.Comment: 9 pages, 9 figure
Few-Body Bound Complexes in One-dimensional Dipolar Gases and Non-Destructive Optical Detection
We consider dipolar interactions between heteronuclear molecules in
low-dimensional geometries. The setup consists of two one-dimensional tubes. We
study the stability of possible few-body complexes in the regime of repulsive
intratube interaction, where the binding arises from intertube attraction. The
stable dimers, trimers, and tetramers are found and we discuss their properties
for both bosonic and fermionic molecules. To observe these complexes we propose
an optical non-destructive detection scheme that enables in-situ observation of
the creation and dissociation of the few-body complexes. A detailed description
of the expected signal of such measurements is given using the numerically
calculated wave functions of the bound states. We also discuss implications on
the many-body physics of dipolar systems in tubular geometries, as well as
experimental issues related to the external harmonic confinement along the tube
and the prospect of applying an in-tube optical lattice to increase the
effective dipole strength.Comment: 16 pages, 15 figures, published versio
A comparative study of dynamical simulation methods for the dissociation of molecular Bose-Einstein condensates
We describe a pairing mean-field theory related to the
Hartree-Fock-Bogoliubov approach, and apply it to the dynamics of dissociation
of a molecular Bose-Einstein condensate (BEC) into correlated bosonic atom
pairs. We also perform the same simulation using two stochastic phase-space
techniques for quantum dynamics -- the positive P-representation method and the
truncated Wigner method. By comparing the results of our calculations we are
able to assess the relative strength of these theoretical techniques in
describing molecular dissociation in one spatial dimension. An important aspect
of our analysis is the inclusion of atom-atom interactions which can be
problematic for the positive-P method. We find that the truncated Wigner method
mostly agrees with the positive-P simulations, but can be simulated for
significantly longer times. The pairing mean-field theory results diverge from
the quantum dynamical methods after relatively short times.Comment: 11 pages, 7 figures, corrected typos, minor content change
- …