11 research outputs found
Tumor Necrosis Factor Receptor Superfamily, Member 1B Haplotypes Increase or Decrease the Risk of Inflammatory Bowel Diseases in a New Zealand Caucasian Population
Inflammatory bowel diseases (IBDs) comprising Crohn disease (CD) and ulcerative colitis (UC) are chronic inflammatory conditions with polygenic susceptibility. Interactions between TNF-alpha and TNF-alpha receptor play a fundamental role in inflammatory response. This study investigates the role that selected single nucleotide polymorphisms (SNPs) and haplotypes in the TNF-alpha receptor (TNSFRSF1B) gene play in the risk of IBD in a New Zealand Caucasian population. DNA samples from 388 CD, 405 UC, 27 indeterminate colitis patients, and 293 randomly selected controls, from Canterbury, New Zealand were screened for 3 common SNPs in TNSFRSF1B: rs1061622 (c.676T > C), rs1061624 (c.*1663A > G), and rs3397 (c.*1690T > C), using TaqMan technologies. Carrying the rs1061624 variant decreased the risk of UC in the left colon (OR 0.73, 95% CI = 0.54–1.00) and of being a smoker at diagnosis (OR 0.62; 95% CI = 0.40–0.96). Carrying the rs3397 variant decreased the risk of penetrating CD (OR 0.62, 95% CI = 0.40–0.95). Three marker haplotype analyses revealed highly significant differences between CD patients and control subjects (χ2 = 29.9, df = 7, P = .0001) and UC cases and controls (χ2 = 46.3, df = 7, P < .0001). We conclude that carrying a 3-marker haplotype in the TNSFRSF1B gene may increase (e.g., haplotype of GGC was 2.9-fold more in the CD or UCpatients) or decrease (e.g., TGT was 0.47-fold less in UC patients) the risk of IBD in a New Zealand Caucasian population
Tumor Necrosis Factor Receptor Superfamily, Member 1B Haplotypes Increase or Decrease the Risk of Inflammatory Bowel Diseases in a New Zealand Caucasian Population
Inflammatory bowel diseases (IBDs) comprising Crohn disease (CD) and ulcerative colitis (UC) are chronic inflammatory conditions with polygenic susceptibility. Interactions between TNF-alpha and TNF-alpha receptor play a fundamental role in inflammatory response. This study investigates the role that selected single nucleotide polymorphisms (SNPs) and haplotypes in the TNF-alpha receptor (TNSFRSF1B) gene play in the risk of IBD in a New Zealand Caucasian population. DNA samples from 388 CD, 405 UC, 27 indeterminate colitis patients, and 293 randomly selected controls, from Canterbury, New Zealand were screened for 3 common SNPs in TNSFRSF1B: rs1061622 (c.676T > C), rs1061624 (c.*1663A > G), and rs3397 (c.*1690T > C), using TaqMan technologies. Carrying the rs1061624 variant decreased the risk of UC in the left colon (OR 0.73, 95% CI = 0.54–1.00) and of being a smoker at diagnosis (OR 0.62; 95% CI = 0.40–0.96). Carrying the rs3397 variant decreased the risk of penetrating CD (OR 0.62, 95% CI = 0.40–0.95). Three marker haplotype analyses revealed highly significant differences between CD patients and control subjects (χ2 = 29.9, df = 7, P = .0001) and UC cases and controls (χ2 = 46.3, df = 7, P < .0001). We conclude that carrying a 3-marker haplotype in the TNSFRSF1B gene may increase (e.g., haplotype of GGC was 2.9-fold more in the CD or UCpatients) or decrease (e.g., TGT was 0.47-fold less in UC patients) the risk of IBD in a New Zealand Caucasian population
First complete genome sequence of infectious laryngotracheitis virus
BACKGROUND: Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that causes acute respiratory disease in chickens worldwide. To date, only one complete genomic sequence of ILTV has been reported. This sequence was generated by concatenating partial sequences from six different ILTV strains. Thus, the full genomic sequence of a single (individual) strain of ILTV has not been determined previously. This study aimed to use high throughput sequencing technology to determine the complete genomic sequence of a live attenuated vaccine strain of ILTV. RESULTS: The complete genomic sequence of the Serva vaccine strain of ILTV was determined, annotated and compared to the concatenated ILTV reference sequence. The genome size of the Serva strain was 152,628 bp, with a G + C content of 48%. A total of 80 predicted open reading frames were identified. The Serva strain had 96.5% DNA sequence identity with the concatenated ILTV sequence. Notably, the concatenated ILTV sequence was found to lack four large regions of sequence, including 528 bp and 594 bp of sequence in the UL29 and UL36 genes, respectively, and two copies of a 1,563 bp sequence in the repeat regions. Considerable differences in the size of the predicted translation products of 4 other genes (UL54, UL30, UL37 and UL38) were also identified. More than 530 single-nucleotide polymorphisms (SNPs) were identified. Most SNPs were located within three genomic regions, corresponding to sequence from the SA-2 ILTV vaccine strain in the concatenated ILTV sequence. CONCLUSIONS: This is the first complete genomic sequence of an individual ILTV strain. This sequence will facilitate future comparative genomic studies of ILTV by providing an appropriate reference sequence for the sequence analysis of other ILTV strains
The Probiotic Escherichia coli Nissle 1917 Reduces Pathogen Invasion and Modulates Cytokine Expression in Caco-2 Cells Infected with Crohn's Disease-Associated E. coli LF82 ▿
Increased numbers of adherent invasive Escherichia coli (AIEC) have been found in Crohn's disease (CD) patients. In this report, we investigate the potential of the probiotic Escherichia coli Nissle 1917 (EcN) to reduce features associated with AIEC pathogenicity in an already established infection with AIEC reference strain LF82
Single nucleotide polymorphism in the tumor necrosis factor-alpha gene affects inflammatory bowel diseases risk
AIM: To investigate the role that single nucleotide polymorphisms (SNPs) in the promoter of the tumour necrosis factor-alpha (TNF-α) gene play in the risk of inflammatory bowel diseases (IBDs) in a New Zealand population, in the context of international studies