160 research outputs found
Predictive factors for new onset or progression of knee osteoarthritis one year after trauma: MRI follow-up in general practice
Objective: To prospectively evaluate prognostic factors for new onset or progression of degenerative change on follow-up MRI one year after knee trauma and the association with clinical outcome. Methods: Within a prospective observational cohort study in general practice, we studied a subgroup of 117 patients with acute knee trauma (mean age 41 years, 43% women). Degenerative change was scored on MRI at baseline and after one year follow-up. Multivariate logistic regression analysis was performed to evaluate prognostic factors for new onset or progressive degenerative change on follow-up MRI. Association between new or progressive degeneration and clinical outcome after one year was assessed. Results: On follow-up MRI 15% of patients with pre-existing knee osteoarthritis showed progression and 26% of patients demonstrated new degenerative change. The only statistically significant prognostic variable in the multivariate analysis was bone marrow oedema on initial MRI (OR 5.29 (95% CI 1.64-17.1), p∈=∈0.005). A significant association between new or progressive degenerative change and clinical outcome was found (p∈=∈0.003). Conclusion: Bone marrow oedema on MRI for acute knee injury is strongly predictive of new onset or progression of degenerative change of the femorotibial joint on follow-up MRI one year after trauma, which is reflected in clinical outcome
Revision 1 Size and position of the healthy meniscus, and its Correlation with sex, height, weight, and bone area- a cross-sectional study
<p>Abstract</p> <p>Background</p> <p>Meniscus extrusion or hypertrophy may occur in knee osteoarthritis (OA). However, currently no data are available on the position and size of the meniscus in asymptomatic men and women with normal meniscus integrity.</p> <p>Methods</p> <p>Three-dimensional coronal DESSwe MRIs were used to segment and quantitatively measure the size and position of the medial and lateral menisci, and their correlation with sex, height, weight, and tibial plateau area. 102 knees (40 male and 62 female) were drawn from the Osteoarthritis Initiative "non-exposed" reference cohort, including subjects without symptoms, radiographic signs, or risk factors for knee OA. Knees with MRI signs of meniscus lesions were excluded.</p> <p>Results</p> <p>The tibial plateau area was significantly larger (p < 0.001) in male knees than in female ones (+23% medially; +28% laterally), as was total meniscus surface area (p < 0.001, +20% medially; +26% laterally). Ipsi-compartimental tibial plateau area was more strongly correlated with total meniscus surface area in men (r = .72 medially; r = .62 laterally) and women (r = .67; r = .75) than contra-compartimental or total tibial plateau area, body height or weight. The ratio of meniscus versus tibial plateau area was similar between men and women (p = 0.22 medially; p = 0.72 laterally). Tibial coverage by the meniscus was similar between men and women (50% medially; 58% laterally), but "physiological" medial meniscal extrusion was greater in women (1.83 ± 1.06mm) than in men (1.24mm ± 1.18mm; p = 0.011).</p> <p>Conclusions</p> <p>These data suggest that meniscus surface area strongly scales with (ipsilateral) tibial plateau area across both sexes, and that tibial coverage by the meniscus is similar between men and women.</p
MR imaging of osteochondral grafts and autologous chondrocyte implantation
Surgical articular cartilage repair therapies for cartilage defects such as osteochondral autograft transfer, autologous chondrocyte implantation (ACI) or matrix associated autologous chondrocyte transplantation (MACT) are becoming more common. MRI has become the method of choice for non-invasive follow-up of patients after cartilage repair surgery. It should be performed with cartilage sensitive sequences, including fat-suppressed proton density-weighted T2 fast spin-echo (PD/T2-FSE) and three-dimensional gradient-echo (3D GRE) sequences, which provide good signal-to-noise and contrast-to-noise ratios. A thorough magnetic resonance (MR)-based assessment of cartilage repair tissue includes evaluations of defect filling, the surface and structure of repair tissue, the signal intensity of repair tissue and the subchondral bone status. Furthermore, in osteochondral autografts surface congruity, osseous incorporation and the donor site should be assessed. High spatial resolution is mandatory and can be achieved either by using a surface coil with a 1.5-T scanner or with a knee coil at 3 T; it is particularly important for assessing graft morphology and integration. Moreover, MR imaging facilitates assessment of complications including periosteal hypertrophy, delamination, adhesions, surface incongruence and reactive changes such as effusions and synovitis. Ongoing developments include isotropic 3D sequences, for improved morphological analysis, and in vivo biochemical imaging such as dGEMRIC, T2 mapping and diffusion-weighted imaging, which make functional analysis of cartilage possible
Minimum joint space width and tibial cartilage morphology in the knees of healthy individuals: A cross-sectional study
<p>Abstract</p> <p>Background</p> <p>The clinical use of minimum joint space width (mJSW) and cartilage volume and thickness has been limited to the longitudinal measurement of disease progression (i.e. change over time) rather than the diagnosis of OA in which values are compared to a standard. This is primarily due to lack of establishment of normative values of joint space width and cartilage morphometry as has been done with bone density values in diagnosing osteoporosis. Thus, the purpose of this pilot study is to estimate reference values of medial joint space width and cartilage morphometry in healthy individuals of all ages using standard radiography and peripheral magnetic resonance imaging.</p> <p>Design</p> <p>For this cross-sectional study, healthy volunteers underwent a fixed-flexion knee X-ray and a peripheral MR (pMR) scan of the same knee using a 1T machine (ONI OrthOne™, Wilmington, MA). Radiographs were digitized and analyzed for medial mJSW using an automated algorithm. Only knees scoring ≤1 on the Kellgren-Lawrence scale (no radiographic evidence of knee OA) were included in the analyses. All 3D SPGRE fat-sat sagittal pMR scans were analyzed for medial tibial cartilage morphometry using a proprietary software program (Chondrometrics GmbH).</p> <p>Results</p> <p>Of 119 healthy participants, 73 were female and 47 were male; mean (SD) age 38.2 (13.2) years, mean BMI 25.0 (4.4) kg/m<sup>2</sup>. Minimum JSW values were calculated for each sex and decade of life. Analyses revealed mJSW did not significantly decrease with increasing decade (p > 0.05) in either sex. Females had a mean (SD) medial mJSW of 4.8 (0.7) mm compared to males with corresponding larger value of 5.7 (0.8) mm. Cartilage morphometry results showed similar trends with mean (SD) tibial cartilage volume and thickness in females of 1.50 (0.19) μL/mm<sup>2 </sup>and 1.45 (0.19) mm, respectively, and 1.77 (0.24) μL/mm<sup>2 </sup>and 1.71 (0.24) mm, respectively, in males.</p> <p>Conclusion</p> <p>These data suggest that medial mJSW values do not decrease with aging in healthy individuals but remain fairly constant throughout the lifespan with "healthy" values of 4.8 mm for females and 5.7 mm for males. Similar trends were seen for cartilage morphology. Results suggest there may be no need to differentiate a t-score and a z-score in OA diagnosis because cartilage thickness and JSW remain constant throughout life in the absence of OA.</p
Assessment of cartilage-dedicated sequences at ultra-high-field MRI: comparison of imaging performance and diagnostic confidence between 3.0 and 7.0Â T with respect to osteoarthritis-induced changes at the knee joint
The objectives of the study were to optimize three cartilage-dedicated sequences for in vivo knee imaging at 7.0Â T ultra-high-field (UHF) magnetic resonance imaging (MRI) and to compare imaging performance and diagnostic confidence concerning osteoarthritis (OA)-induced changes at 7.0 and 3.0Â T MRI.
Optimized MRI sequences for cartilage imaging at 3.0Â T were tailored for 7.0Â T: an intermediate-weighted fast spin-echo (IM-w FSE), a fast imaging employing steady-state acquisition (FIESTA) and a T1-weighted 3D high-spatial-resolution volumetric fat-suppressed spoiled gradient-echo (SPGR) sequence. Three healthy subjects and seven patients with mild OA were examined. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), diagnostic confidence in assessing cartilage abnormalities, and image quality were determined. Abnormalities were assessed with the whole organ magnetic resonance imaging score (WORMS). Focal cartilage lesions and bone marrow edema pattern (BMEP) were also quantified.
At 7.0 T, SNR was increased (p < 0.05) for all sequences. For the IM-w FSE sequence, limitations with the specific absorption rate (SAR) required modifications of the scan parameters yielding an incomplete coverage of the knee joint, extensive artifacts, and a less effective fat saturation. CNR and image quality were increased (p < 0.05) for SPGR and FIESTA and decreased for IM-w FSE. Diagnostic confidence for cartilage lesions was highest (p < 0.05) for FIESTA at 7.0 T. Evaluation of BMEP was decreased (p < 0.05) at 7.0 T due to limited performance of IM-w FSE.
Gradient echo-based pulse sequences like SPGR and FIESTA are well suited for imaging at UHF which may improve early detection of cartilage lesions. However, UHF IM-w FSE sequences are less feasible for clinical use
Optimal sampling of MRI slices for the assessment of knee cartilage volume for cross-sectional and longitudinal studies
BACKGROUND: MRI slices of 1.5 mm thickness have been used in both cross sectional and longitudinal studies of osteoarthritis, but is difficult to apply to large studies as most techniques used in measuring knee cartilage volumes require substantial post-image processing. The aim of this study was to determine the optimal sampling of 1.5 mm thick slices of MRI scans to estimate knee cartilage volume in males and females for cross-sectional and longitudinal studies. METHODS: A total of 150 subjects had a sagittal T1-weighted fat-suppressed MRI scan of the right knee at a partition thickness of 1.5 mm to determine their cartilage volume. Fifty subjects had both baseline and 2-year follow up MRI scans. Lateral, medial tibial and patellar cartilage volumes were calculated with different samples from 1.5 mm thick slices by extracting one in two, one in three, and one in four to compare to cartilage volume and its rate of change. Agreement was assessed by means of intraclass correlation coefficient (ICC) and Bland & Altman plots. RESULTS: Compared to the whole sample of 1.5 mm thick slices, measuring every second to fourth slice led to very little under or over estimation in cartilage volume and its annual change. At all sites and subgroups, measuring every second slice had less than 1% mean difference in cartilage volume and its annual rate of change with all ICCs ≥ 0.98. CONCLUSION: Sampling alternate 1.5 mm thick MRI slices is sufficient for knee cartilage volume measurement in cross-sectional and longitudinal epidemiological studies with little increase in measurement error. This approach will lead to a substantial decrease in post-scan processing time
Site-specific analysis of gene expression in early osteoarthritis using the Pond-Nuki model in dogs
BACKGROUND: Osteoarthritis (OA) is a progressive and debilitating disease that often develops from a focal lesion and may take years to clinically manifest to a complete loss of joint structure and function. Currently, there is not a cure for OA, but early diagnosis and initiation of treatment may dramatically improve the prognosis and quality of life for affected individuals. This study was designed to determine the feasibility of analyzing changes in gene expression of articular cartilage using the Pond-Nuki model two weeks after ACL-transection in dogs, and to characterize the changes observed at this time point. METHODS: The ACL of four dogs was completely transected arthroscopically, and the contralateral limb was used as the non-operated control. After two weeks the dogs were euthanatized and tissues harvested from the tibial plateau and femoral condyles of both limbs. Two dogs were used for histologic analysis and Mankin scoring. From the other two dogs the surface of the femoral condyle and tibial plateau were divided into four regions each, and tissues were harvested from each region for biochemical (GAG and HP) and gene expression analysis. Significant changes in gene expression were determined using REST-XL, and Mann-Whitney rank sum test was used to analyze biochemical data. Significance was set at (p < 0.05). RESULTS: Significant differences were not observed between ACL-X and control limbs for Mankin scores or GAG and HP tissue content. Further, damage to the tissue was not observed grossly by India ink staining. However, significant changes in gene expression were observed between ACL-X and control tissues from each region analyzed, and indicate that a unique regional gene expression profile for impending ACL-X induced joint pathology may be identified in future studies. CONCLUSION: The data obtained from this study lend credence to the research approach and model for the characterization of OA, and the identification and validation of future diagnostic modalities. Further, the changes observed in this study may reflect the earliest changes in AC reported during the development of OA, and may signify pathologic changes within a stage of disease that is potentially reversible
Meniscal T1rho and T2 measured with 3.0T MRI increases directly after running a marathon
PURPOSE: To prospectively evaluate changes in T1rho and T2 relaxation time in the meniscus using 3.0 T MRI in asymptomatic knees of marathon runners and to compare these findings with those of age-matched healthy subjects. MATERIAL AND METHODS: Thirteen marathon runners underwent 3.0 T MRI including T1rho and T2 mapping sequences before, 48-72 h after, and 3 months after competition. Ten controls were examined at baseline and after 3 months. All images were analyzed by two musculoskeletal radiologists identifying and grading cartilage, meniscal, ligamentous. and other knee abnormalities with WORMS scores. Meniscal segmentation was performed to generate T1rho and T2 maps in six compartments. RESULTS: No differences in morphological knee abnormalities were found before and after the marathon. However, all marathon runners showed a significant increase in T1rho and T2 values after competition in all meniscus compartments (p < 0.0001), which may indicate changes in the biochemical composition of meniscal tissue. While T2 values decreased after 3 months T1rho values remained at a high level, indicating persisting changes in the meniscal matrix composition after a marathon. CONCLUSION: T2 values in menisci have the potential to be used as biomarkers for identifying reversible meniscus matrix changes indicating potential tissue damage. T1rho values need further study, but may be a valuable marker for diagnosing early, degenerative changes in the menisci following exercise
Recommended from our members
Genicular artEry embolizatioN in patiEnts with oSteoarthrItiS of the knee (GENESIS) using permanent microspheres: interim analysis
Purpose: Planned interim analysis of GENESIS; a
prospective pilot study investigating the role of genicular artery embolization (GAE) in patients with mild to moderate osteoarthritis of the knee using permanent
microspheres.
Methods: Thirty-eight patients, median age = 60 (45–83),
attended for GAE using 100–300 lm permanent microspheres. All patients had mild to moderate knee OA, resistant to conservative treatments over 6 months. Knee MRI was performed at baseline, and 12 months, enabling semi-quantitative analysis using Whole-Organ Magnetic Resonance Imaging Score (WORMS). Knee Injury and Osteoarthritis Outcome Score (KOOS) and visual analogue scale (VAS) (0–100 mm) were completed at baseline, 6 weeks, 3 months (n = 32), and 1-year (n = 16). Adverse events were recorded prospectively.
Results: Technical success of accessing and embolizing the
target genicular arteries was 84%. Six patients were not
embolized: four due to a presumed risk of non-target
embolization, and two due to a lack of hyperaemic target.
Mean VAS improved from 60 (SD = 20, 95% CI 53–66) at
baseline to 36 (SD = 24, 95% CI 28–44) at 3 months (p\0.001) and 45 (SD = 30, 95% CI 30–60) at 1-year (p\0.05). All KOOS subscales showed a significant
improvement at 6-weeks, 3-months, and 1-year follow-up,
except function in daily living, which reached borderline
significance (p = 0.06) at 1-year. Four patients experienced mild self-limiting skin discoloration over the embolized territory. One patient experienced a small self-limiting groin haematoma. WORMS scores at 1-year follow-up
showed significant improvement in synovitis (p \0.05). There were no cases of osteonecrosis.
Conclusion: GAE using permanent microspheres in
patients with mild to moderate knee OA is safe, with
potential efficacy at early follow-up
- …