30 research outputs found

    Grammars for Document Spanners

    Get PDF
    We propose a new grammar-based language for defining information-extractors from documents (text) that is built upon the well-studied framework of document spanners for extracting structured data from text. While previously studied formalisms for document spanners are mainly based on regular expressions, we use an extension of context-free grammars, called {extraction grammars}, to define the new class of context-free spanners. Extraction grammars are simply context-free grammars extended with variables that capture interval positions of the document, namely spans. While regular expressions are efficient for tokenizing and tagging, context-free grammars are also efficient for capturing structural properties. Indeed, we show that context-free spanners are strictly more expressive than their regular counterparts. We reason about the expressive power of our new class and present a pushdown-automata model that captures it. We show that extraction grammars can be evaluated with polynomial data complexity. Nevertheless, as the degree of the polynomial depends on the query, we present an enumeration algorithm for unambiguous extraction grammars that, after quintic preprocessing, outputs the results sequentially, without repetitions, with a constant delay between every two consecutive ones

    Joining Extractions of Regular Expressions

    Get PDF
    Regular expressions with capture variables, also known as "regex formulas," extract relations of spans (interval positions) from text. These relations can be further manipulated via Relational Algebra as studied in the context of document spanners, Fagin et al.'s formal framework for information extraction. We investigate the complexity of querying text by Conjunctive Queries (CQs) and Unions of CQs (UCQs) on top of regex formulas. We show that the lower bounds (NP-completeness and W[1]-hardness) from the relational world also hold in our setting; in particular, hardness hits already single-character text! Yet, the upper bounds from the relational world do not carry over. Unlike the relational world, acyclic CQs, and even gamma-acyclic CQs, are hard to compute. The source of hardness is that it may be intractable to instantiate the relation defined by a regex formula, simply because it has an exponential number of tuples. Yet, we are able to establish general upper bounds. In particular, UCQs can be evaluated with polynomial delay, provided that every CQ has a bounded number of atoms (while unions and projection can be arbitrary). Furthermore, UCQ evaluation is solvable with FPT (Fixed-Parameter Tractable) delay when the parameter is the size of the UCQ

    SQL Nulls and Two-Valued Logic

    Get PDF

    Detecting Ambiguity in Prioritized Database Repairing

    Get PDF
    In its traditional definition, a repair of an inconsistent database is a consistent database that differs from the inconsistent one in a "minimal way." Often, repairs are not equally legitimate, as it is desired to prefer one over another; for example, one fact is regarded more reliable than another, or a more recent fact should be preferred to an earlier one. Motivated by these considerations, researchers have introduced and investigated the framework of preferred repairs, in the context of denial constraints and subset repairs. There, a priority relation between facts is lifted towards a priority relation between consistent databases, and repairs are restricted to the ones that are optimal in the lifted sense. Three notions of lifting (and optimal repairs) have been proposed: Pareto, global, and completion. In this paper we investigate the complexity of deciding whether the priority relation suffices to clean the database unambiguously, or in other words, whether there is exactly one optimal repair. We show that the different lifting semantics entail highly different complexities. Under Pareto optimality, the problem is coNP-complete, in data complexity, for every set of functional dependencies (FDs), except for the tractable case of (equivalence to) one FD per relation. Under global optimality, one FD per relation is still tractable, but we establish Pi-2-p-completeness for a relation with two FDs. In contrast, under completion optimality the problem is solvable in polynomial time for every set of FDs. In fact, we present a polynomial-time algorithm for arbitrary conflict hypergraphs. We further show that under a general assumption of transitivity, this algorithm solves the problem even for global optimality. The algorithm is extremely simple, but its proof of correctness is quite intricate

    Handling SQL Nulls with Two-Valued Logic

    Get PDF
    The design of SQL is based on a three-valued logic (3VL), rather than the familiar Boolean logic with truth values true and false, to accommodate the additional truth value unknown for handling nulls. It is viewed as indispensable for SQL expressiveness, but is at the same time much criticized for leading to unintuitive behavior of queries and thus being a source of programmer mistakes. We show that, contrary to the widely held view, SQL could have been designed based on the standard Boolean logic, without any loss of expressiveness and without giving up nulls. The approach itself follows SQL’s evaluation which only retains tuples for which conditions in the WHERE clause evaluate to true. We show that conflating unknown, resulting from nulls, with false leads to an equally expressive version of SQL that does not use the third truth value. Queries written under the two-valued semantics can be efficiently translated into the standard SQL and thus executed on any existing RDBMS. These results cover the core of the SQL 1999 Standard, including SELECT-FROM-WHERE-GROUP BY-HAVING queries extended with subqueries and IN/EXISTS/ANY/ALL conditions, and recursive queries. We provide two extensions of this result showing that no other way of converting 3VL into Boolean logic, nor any other many-valued logic for treating nulls could have possibly led to a more expressive language. These results not only present small modifications of SQL that eliminate the source of many programmer errors without the need to reimplement database internals, but they also strongly suggest that new query languages for various data models do not have to follow the much criticized SQL’s three-valued approach

    Joining extractions of regular expressions

    Get PDF
    Regular expressions with capture variables, also known as “regex formulas,” extract relations of spans (interval positions) from text. These relations can be further manipulated via the relational Algebra as studied in the context of “document spanners,” Fagin et al.’s formal framework for information extraction. We investigate the complexity of querying text by Conjunctive Queries (CQs) and Unions of CQs (UCQs) on top of regex formulas. Such queries have been investigated in prior work on document spanners, but little is known about the (combined) complexity of their evaluation. We show that the lower bounds (NP-completeness and W[1]-hardness) from the relational world also hold in our setting; in particular, hardness hits already single-character text. Yet, the upper bounds from the relational world do not carry over. Unlike the relational world, acyclic CQs, and even gamma-acyclic CQs, are hard to compute. The source of hardness is that it may be intractable to instantiate the relation defined by a regex formula, simply because it has an exponential number of tuples. Yet, we are able to establish general upper bounds. In particular, UCQs can be evaluated with polynomial delay, provided that every CQ has a bounded number of atoms (while unions and projection can be arbitrary). Furthermore, UCQ evaluation is solvable with FPT (Fixed-Parameter Tractable) delay when the parameter is the size of the UCQ

    Recursive Programs for Document Spanners

    Get PDF
    A document spanner models a program for Information Extraction (IE) as a function that takes as input a text document (string over a finite alphabet) and produces a relation of spans (intervals in the document) over a predefined schema. A well-studied language for expressing spanners is that of the regular spanners: relational algebra over regex formulas, which are regular expressions with capture variables. Equivalently, the regular spanners are the ones expressible in non-recursive Datalog over regex formulas (which extract relations that constitute the extensional database). This paper explores the expressive power of recursive Datalog over regex formulas. We show that such programs can express precisely the document spanners computable in polynomial time. We compare this expressiveness to known formalisms such as the closure of regex formulas under the relational algebra and string equality. Finally, we extend our study to a recently proposed framework that generalizes both the relational model and the document spanners

    Complexity Bounds for Relational Algebra over Document Spanners

    Get PDF
    We investigate the complexity of evaluating queries in Relational Algebra (RA) over the relations extracted by regex formulas (i.e., regular expressions with capture variables) over text documents. Such queries, also known as the regular document spanners, were shown to have an evaluation with polynomial delay for every positive RA expression (i.e., consisting of only natural joins, projections and unions); here, the RA expression is fixed and the input consists of both the regex formulas and the document. In this work, we explore the implication of two fundamental generalizations. The first is adopting the "schemaless" semantics for spanners, as proposed and studied by Maturana et al. The second is going beyond the positive RA to allowing the difference operator. We show that each of the two generalizations introduces computational hardness: it is intractable to compute the natural join of two regex formulas under the schemaless semantics, and the difference between two regex formulas under both the ordinary and schemaless semantics. Nevertheless, we propose and analyze syntactic constraints, on the RA expression and the regex formulas at hand, such that the expressive power is fully preserved and, yet, evaluation can be done with polynomial delay. Unlike the previous work on RA over regex formulas, our technique is not (and provably cannot be) based on the static compilation of regex formulas, but rather on an ad-hoc compilation into an automaton that incorporates both the query and the document. This approach also allows us to include black-box extractors in the RA expression
    corecore