4,272 research outputs found

    Privacy protocols

    Full text link
    Security protocols enable secure communication over insecure channels. Privacy protocols enable private interactions over secure channels. Security protocols set up secure channels using cryptographic primitives. Privacy protocols set up private channels using secure channels. But just like some security protocols can be broken without breaking the underlying cryptography, some privacy protocols can be broken without breaking the underlying security. Such privacy attacks have been used to leverage e-commerce against targeted advertising from the outset; but their depth and scope became apparent only with the overwhelming advent of influence campaigns in politics. The blurred boundaries between privacy protocols and privacy attacks present a new challenge for protocol analysis. Covert channels turn out to be concealed not only below overt channels, but also above: subversions, and the level-below attacks are supplemented by sublimations and the level-above attacks.Comment: 38 pages, 6 figure

    Real-Time Hand Tracking Using a Sum of Anisotropic Gaussians Model

    Full text link
    Real-time marker-less hand tracking is of increasing importance in human-computer interaction. Robust and accurate tracking of arbitrary hand motion is a challenging problem due to the many degrees of freedom, frequent self-occlusions, fast motions, and uniform skin color. In this paper, we propose a new approach that tracks the full skeleton motion of the hand from multiple RGB cameras in real-time. The main contributions include a new generative tracking method which employs an implicit hand shape representation based on Sum of Anisotropic Gaussians (SAG), and a pose fitting energy that is smooth and analytically differentiable making fast gradient based pose optimization possible. This shape representation, together with a full perspective projection model, enables more accurate hand modeling than a related baseline method from literature. Our method achieves better accuracy than previous methods and runs at 25 fps. We show these improvements both qualitatively and quantitatively on publicly available datasets.Comment: 8 pages, Accepted version of paper published at 3DV 201

    An intuitive control space for material appearance

    Get PDF
    Many different techniques for measuring material appearance have been proposed in the last few years. These have produced large public datasets, which have been used for accurate, data-driven appearance modeling. However, although these datasets have allowed us to reach an unprecedented level of realism in visual appearance, editing the captured data remains a challenge. In this paper, we present an intuitive control space for predictable editing of captured BRDF data, which allows for artistic creation of plausible novel material appearances, bypassing the difficulty of acquiring novel samples. We first synthesize novel materials, extending the existing MERL dataset up to 400 mathematically valid BRDFs. We then design a large-scale experiment, gathering 56,000 subjective ratings on the high-level perceptual attributes that best describe our extended dataset of materials. Using these ratings, we build and train networks of radial basis functions to act as functionals mapping the perceptual attributes to an underlying PCA-based representation of BRDFs. We show that our functionals are excellent predictors of the perceived attributes of appearance. Our control space enables many applications, including intuitive material editing of a wide range of visual properties, guidance for gamut mapping, analysis of the correlation between perceptual attributes, or novel appearance similarity metrics. Moreover, our methodology can be used to derive functionals applicable to classic analytic BRDF representations. We release our code and dataset publicly, in order to support and encourage further research in this direction

    Combinatorial Gradient Fields for 2D Images with Empirically Convergent Separatrices

    Full text link
    This paper proposes an efficient probabilistic method that computes combinatorial gradient fields for two dimensional image data. In contrast to existing algorithms, this approach yields a geometric Morse-Smale complex that converges almost surely to its continuous counterpart when the image resolution is increased. This approach is motivated using basic ideas from probability theory and builds upon an algorithm from discrete Morse theory with a strong mathematical foundation. While a formal proof is only hinted at, we do provide a thorough numerical evaluation of our method and compare it to established algorithms.Comment: 17 pages, 7 figure
    • …
    corecore