8,619 research outputs found

    The Rockstar Phase-Space Temporal Halo Finder and the Velocity Offsets of Cluster Cores

    Full text link
    We present a new algorithm for identifying dark matter halos, substructure, and tidal features. The approach is based on adaptive hierarchical refinement of friends-of-friends groups in six phase-space dimensions and one time dimension, which allows for robust (grid-independent, shape-independent, and noise-resilient) tracking of substructure; as such, it is named Rockstar (Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement). Our method is massively parallel (up to 10^5 CPUs) and runs on the largest current simulations (>10^10 particles) with high efficiency (10 CPU hours and 60 gigabytes of memory required per billion particles analyzed). A previous paper (Knebe et al 2011) has shown Rockstar to have class-leading recovery of halo properties; we expand on these comparisons with more tests and higher-resolution simulations. We show a significant improvement in substructure recovery as compared to several other halo finders and discuss the theoretical and practical limits of simulations in this regard. Finally, we present results which demonstrate conclusively that dark matter halo cores are not at rest relative to the halo bulk or satellite average velocities and have coherent velocity offsets across a wide range of halo masses and redshifts. For massive clusters, these offsets can be up to 350 km/s at z=0 and even higher at high redshifts. Our implementation is publicly available at http://code.google.com/p/rockstar .Comment: 20 pages, 14 figures. Minor revisions to match accepted versio

    Large Zero Point Density Fluctuations in Fluids

    Full text link
    Zero point density fluctuations in a liquid and their potential observation by light scattering are discussed. It is suggested that there are two distinct effects of interest. One gives an average number of scattered photons, and depends upon an inverse power of the photon wavelength. The second effect arises in the scattering of finite size photon wave packets and depends upon an inverse power of the spatial size of the wave packet. This effect appears as large fluctuations in the number of scattered photons, and is analogous to the vacuum fluctuations of spacetime averages of the energy density in quantum field theory.Comment: 9 pages, 2 figure

    Motion Control of Robotic Arm with Command Shaping Method

    Get PDF
    In the manufacturing industry, lots of rapid point-to-point motion is required while the residual vibration is unfavorable. Residual vibrations caused by flexible elements are limiting the performance of mechanical system, especially when the system needs to make rapid point-to-point motion. As proved in earlier studies, avoiding natural frequencies of the mechanical system reduces the residual vibrations. This work is based on a non-linear, two-link flexible jointed robot with configuration dependent resonance. Command shaping method consisting different combinations of base functions and weighting factors are compared in this work. The compatibility of command shaping with classical feedback control structure allows a computationally effective method for real time implementation. By measuring the acceleration after the input stops, the residual vibration is analyzed. The best case would be the one with the least peak-to-peak residual acceleration and reasonable peak acceleration during the motion. Experimental results show that the residual vibrations can be reduced considerably after the implementation of command shaping method. As verified in this work, command shaping method is a practical way to control motion with flexible elements without exciting the system’s natural frequencies and demanding significantly more computation capability

    Controlling crystal symmetries in phase-field crystal models

    Full text link
    We investigate the possibility to control the symmetry of ordered states in phase-field crystal models by tuning nonlinear resonances. In two dimensions, we find that a state of square symmetry as well as coexistence between squares and hexagons can be easily obtained. In contrast, it is delicate to obtain coexistence of squares and liquid. We develop a general method for constructing free energy functionals that exhibit solid-liquid coexistence with desired crystal symmetries. As an example, we develop a free energy functional for square-liquid coexistence in two dimensions. A systematic analysis for determining the parameters of the necessary nonlinear terms is provided. The implications of our findings for simulations of materials with simple cubic symmetry are discussed.Comment: 19 pages, 6 figure

    Space and time averaged quantum stress tensor fluctuations

    Get PDF
    We extend previous work on the numerical diagonalization of quantum stress tensor operators in the Minkowski vacuum state, which considered operators averaged in a finite time interval, to operators averaged in a finite spacetime region. Since real experiments occur over finite volumes and durations, physically meaningful fluctuations may be obtained from stress tensor operators averaged by compactly supported sampling functions in space and time. The direct diagonalization, via a Bogoliubov transformation, gives the eigenvalues and the probabilities of measuring those eigenvalues in the vacuum state, from which the underlying probability distribution can be constructed. For the normal-ordered square of the time derivative of a massless scalar field in a spherical cavity with finite degrees of freedom, analysis of the tails of these distributions confirms previous results based on the analytical treatment of the high moments. We find that the probability of large vacuum fluctuations is reduced when spatial averaging is included, but the tail still decreases more slowly than exponentially as the magnitude of the measured eigenvalues increases, suggesting vacuum fluctuations may not always be subdominant to thermal fluctuations and opening up the possibility of experimental observation under the right conditions.We extend previous work on the numerical diagonalization of quantum stress tensor operators in the Minkowski vacuum state, which considered operators averaged in a finite time interval, to operators averaged in a finite spacetime region. Since real experiments occur over finite volumes and durations, physically meaningful fluctuations may be obtained from stress tensor operators averaged by compactly supported sampling functions in space and time. The direct diagonalization, via a Bogoliubov transformation, gives the eigenvalues and the probabilities of measuring those eigenvalues in the vacuum state, from which the underlying probability distribution can be constructed. For the normal-ordered square of the time derivative of a massless scalar field in a spherical cavity with finite degrees of freedom, analysis of the tails of these distributions confirms previous results based on the analytical treatment of the high moments. We find that the probability of large vacuum fluctuations is reduced when spatial averaging is included, but the tail still decreases more slowly than exponentially as the magnitude of the measured eigenvalues increases, suggesting vacuum fluctuations may not always be subdominant to thermal fluctuations and opening up the possibility of experimental observation under the right conditions.Peer reviewe

    Frequency Spectra Analysis of Space and Time Averaged Quantum Stress Tensor Fluctuations

    Full text link
    Observing physical effects of large quantum stress tensor fluctuations requires knowledge of the interaction between the probe and the particles of the underlying quantum fields. The quantum stress tensor operators must first be averaged in time alone or space and time to confer meaningful results, the details of which may correspond to the physical measurement process. We build on prior results to characterize the particle frequencies associated with quantum fluctuations of different magnitudes. For the square of time derivatives of the massless scalar field in a spherical cavity, we find that these frequencies are bounded above in a power law behavior. Our findings provide a way identify the largest quantum fluctuation that may be probed in experiments relying on frequency-dependent interactions.Comment: 23 pages, 4 figures, 1 tabl

    Maser-beam instability of Bernstein waves

    Get PDF
    The present study constitutes a continuation and improvement of the preceding work by Yoon et al. [J. Geophys. Res. 104, 19801 (1999)]. In the present discussion, an instability of Bernstein waves excited by a beam of energetic electrons is investigated. Special attention is paid to the regime where the ratio of plasma frequency, vpe , to electron gyrofrequency, Ve , is sufficiently higher than unity. An approximate but fairly accurate scheme is introduced to deal with the situation dictated by the condition, vpe 2 /Ve 2e1. The present investigation is motivated by the research in solar radiophysics. However, in this article the emphasis is placed on basic properties of the instability rather than its application

    Collapse of the vortex-lattice inductance and shear modulus at the melting transition in untwinned YBa2Cu3O7\rm YBa_2Cu_3O_7

    Full text link
    The complex resistivity ρ^(ω)\hat{\rho}(\omega) of the vortex lattice in an untwinned crystal of 93-K YBa2Cu3O7\rm YBa_2Cu_3O_7 has been measured at frequencies ω/2π\omega/2\pi from 100 kHz to 20 MHz in a 2-Tesla field Hc\bf H\parallel c, using a 4-probe RF transmission technique that enables continuous measurements versus ω\omega and temperature TT. As TT is increased, the inductance Ls(ω)=Imρ^(ω)/ω{\cal L}_s(\omega) ={\rm Im} \hat{\rho}(\omega)/ \omega increases steeply to a cusp at the melting temperature TmT_m, and then undergoes a steep collapse consistent with vanishing of the shear modulus c66c_{66}. We discuss in detail the separation of the vortex-lattice inductance from the `volume' inductance, and other skin-depth effects. To analyze the spectra, we consider a weakly disordered lattice with a low pin density. Close fits are obtained to ρ1(ω)\rho_1(\omega) over 2 decades in ω\omega. Values of the pinning parameter κ\kappa and shear modulus c66c_{66} obtained show that c66c_{66} collapses by over 4 decades at TmT_m, whereas κ\kappa remains finite.Comment: 11 pages, 8 figures, Phys. Rev. B, in pres

    Rotating Black Holes in Metric-Affine Gravity

    Full text link
    Within the framework of metric-affine gravity (MAG, metric and an independent linear connection constitute spacetime), we find, for a specific gravitational Lagrangian and by using {\it prolongation} techniques, a stationary axially symmetric exact solution of the vacuum field equations. This black hole solution embodies a Kerr-deSitter metric and the post-Riemannian structures of torsion and nonmetricity. The solution is characterized by mass, angular momentum, and shear charge, the latter of which is a measure for violating Lorentz invariance.Comment: 32 pages latex, 3 table

    Protein Bioinformatics Infrastructure for the Integration and Analysis of Multiple High-Throughput “omics” Data

    Get PDF
    High-throughput “omics” technologies bring new opportunities for biological and biomedical researchers to ask complex questions and gain new scientific insights. However, the voluminous, complex, and context-dependent data being maintained in heterogeneous and distributed environments plus the lack of well-defined data standard and standardized nomenclature imposes a major challenge which requires advanced computational methods and bioinformatics infrastructures for integration, mining, visualization, and comparative analysis to facilitate data-driven hypothesis generation and biological knowledge discovery. In this paper, we present the challenges in high-throughput “omics” data integration and analysis, introduce a protein-centric approach for systems integration of large and heterogeneous high-throughput “omics” data including microarray, mass spectrometry, protein sequence, protein structure, and protein interaction data, and use scientific case study to illustrate how one can use varied “omics” data from different laboratories to make useful connections that could lead to new biological knowledge
    corecore