56 research outputs found

    Calculation of current-induced torque from spin continuity equation

    Full text link
    Current-induced torque is formulated based on the spin continuity equation. The formulation does not rely on the assumption of separation of local spin and charge degrees of freedom, in contrast to approaches based on the ss-dd model or mean-field approximation of itinerant ferromagnetism. This new method would be thus useful for the estimation of torques in actual materials by first-principles calculations. As an example, the formalism is applied to the adiabatic limit of the ss-dd model in order to obtain the analytical expression for torques and corresponding β\beta terms arising from spin relaxation due to spin-flip scattering and spin-orbit interaction.Comment: submitted to Phys. Rev.

    Anisotropic ferromagnetism in carbon doped zinc oxide from first-principles studies

    Full text link
    A density functional theory study of substitutional carbon impurities in ZnO has been performed, using both the generalized gradient approximation (GGA) and a hybrid functional (HSE06) as exchange-correlation functional. It is found that the non-spinpolarized CZn_\mathrm{Zn} impurity is under almost all conditions thermodynamically more stable than the CO_\mathrm{O} impurity which has a magnetic moment of 2μB2\mu_{\mathrm{B}}, with the exception of very O-poor and C-rich conditions. This explains the experimental difficulties in sample preparation in order to realize d0d^{0}-ferromagnetism in C-doped ZnO. From GGA calculations with large 96-atom supercells, we conclude that two CO_\mathrm{O}-CO_\mathrm{O} impurities in ZnO interact ferromagnetically, but the interaction is found to be short-ranged and anisotropic, much stronger within the hexagonal abab-plane of wurtzite ZnO than along the c-axis. This layered ferromagnetism is attributed to the anisotropy of the dispersion of carbon impurity bands near the Fermi level for CO_{\mathrm{O}} impurities in ZnO. From the calculated results, we derive that a CO_{\mathrm{O}} concentration between 2% and 6% should be optimal to achieve d0d^{0}-ferromagnetism in C-doped ZnO.Comment: 9 pages, 7 figure

    First-principles studies on graphene-supported transition metal clusters

    Get PDF
    Theoretical studies on the structure, stability, and magnetic properties of icosahedral TM13 (TM = Fe, Co, Ni) clusters, deposited on pristine (defect free) and defective graphene sheet as well as graphene flakes, have been carried out within a gradient corrected density functional framework. The defects considered in our study include a carbon vacancy for the graphene sheet and a five-membered and a seven-membered ring structures for graphene flakes (finite graphene chunks). It is observed that the presence of defect in the substrate has a profound influence on the electronic structure and magnetic properties of graphene-transition metal complexes, thereby increasing the binding strength of the TM cluster on to the graphene substrate. Among TM13 clusters, Co-13 is absorbed relatively more strongly on pristine and defective graphene as compared to Fe-13 and Ni-13 clusters. The adsorbed clusters show reduced magnetic moment compared to the free clusters

    Magnetic properties of small Pt-capped Fe, Co and Ni clusters: A density functional theory study

    Get PDF
    Theoretical studies on M13_{13} (M = Fe, Co, Ni) and M13_{13}Ptn_n (for nn = 3, 4, 5, 20) clusters including the spin-orbit coupling are done using density functional theory. The magnetic anisotropy energy (MAE) along with the spin and orbital moments are calculated for M13_{13} icosahedral clusters. The angle-dependent energy differences are modelled using an extended classical Heisenberg model with local anisotropies. From our studies, the MAE for Jahn-Teller distorted Fe13_{13}, Mackay distorted Fe13_{13} and nearly undistorted Co13_{13} clusters are found to be 322, 60 and 5 μ\mueV/atom, respectively, and are large relative to the corresponding bulk values, (which are 1.4 and 1.3 μ\mueV/atom for bcc Fe and fcc Co, respectively.) However, for Ni13_{13} (which practically does not show relaxation tendencies), the calculated value of MAE is found to be 0.64 μ\mueV/atom, which is approximately four times smaller compared to the bulk fcc Ni (2.7 μ\mueV/atom). In addition, MAE of the capped cluster (Fe13_{13}Pt4_4) is enhanced compared to the uncapped Jahn-Teller distorted Fe13_{13} cluster
    • …
    corecore