241 research outputs found

    Salicylaldehyde hydrazones: buttressing of outer sphere hydrogen-bonding and copper-extraction properties

    Get PDF
    Salicylaldehyde hydrazones are weaker copper extractants than their oxime derivatives, which are used in hydrometallurgical processes to recover ~20 % of the world’s copper. Their strength, based on the extraction equilibrium constant Ke, can be increased by nearly three orders of magnitude by incorporating electron-withdrawing or hydrogen-bond acceptor groups (X) ortho to the phenolic OH group of the salicylaldehyde unit. Density functional theory calculations suggest that the effects of the 3-X substituents arise from a combination of their influence on the acidity of the phenol in the pH-dependent equilibrium, Cu2+ + 2Lorg ⇌ [Cu(L–H)2]org + 2H+, and on their ability to ‘buttress’ interligand hydrogen bonding by interacting with the hydrazone N–H donor group. X-ray crystal structure determination and computed structures indicate that in both the solid state and the gas phase, coordinated hydrazone groups are less planar than coordinated oximes and this has an adverse effect on intramolecular hydrogen-bond formation to the neighbouring phenolate oxygen atoms

    Ditopic receptors containing urea groups for solvent extraction of Cu(II) salts

    Get PDF
    [Abstract] The ditopic receptor L3 [1-(2-((7-(4-(tert-butyl)benzyl)-1,4,7,10-tetraazacyclododecan-1-yl)methyl)phenyl)-3-(3-nitrophenyl)urea] containing a macrocyclic cyclen unit for Cu(II)-coordination and a urea moiety for anion binding was designed for recognition of metal salts. The X-ray structure of [CuL3(SO4)] shows that the sulfate anion is involved in cooperative binding via coordination to the metal ion and hydrogen-bonding to the urea unit. This behaviour is similar to that observed for the related receptor L1 [1-(2-((bis(pyridin-2-ylmethyl)amino)methyl)phenyl)-3-(3-nitrophenyl)urea], which forms a dimeric [CuL1(μ-SO4)]2 structure in the solid state. In contrast, the single crystal X-ray structure of [ZnL3(NO3)2] contains a 1 : 2 complex (metal : anion) where one anion coordinates to the metal and the other is hydrogen-bonded to the urea group. Spectrophotometric titrations performed for the [CuL3(OSMe2)]2+ complex indicate that this system is able to bind a wide range of anions with an affinity sequence: MeCO2− > Cl− > H2PO4− > Br− > NO2− > HSO4− > NO3−. Lipophilic analogues of L1 and L3 extract CuSO4 and CuCl2 from water into chloroform with high selectivity over the corresponding Co(II), Ni(II) and Zn(II) salts.Xunta de Galicia; EM 2012/088Xunta de Galicia; CN-2012/01

    Linking [M-3(III)] triangles with "double-headed" phenolic oximes

    Get PDF
    Strapping two salicylaldoxime units together with aliphatic alpha,Omega-aminomethyl links in the 3-position gives ligands which allow the assembly of the polynuclear complexes [Fe7O2(OH)(6)(H(2)L1)(3)(py)(6)] (BF4)(5)center dot 6H(2)O center dot 14MeOH (1 center dot 6H(2)O center dot 14MeOH), [Fe6O(OH)(7)(H2L2)(3)](BF4)(3)center dot 4H(2)O center dot 9MeOH (2 center dot 4H(2)O center dot 9MeOH) and [Mn6O2(OH)(2)(H(2)L1)(3)(py)(4)(MeCN)(2)](BF4)(5)(NO3)center dot 3MeCN center dot H2O center dot 5py (3 center dot 3MeCN center dot H2O center dot 5py). In each case the metallic skeleton of the cluster is based on a trigonal prism in which two [(M3O)-O-III] triangles are tethered together via three helically twisted double-headed oximes. The latter are present as H2L2- in which the oximic and phenolic O-atoms are deprotonated and the amino N-atoms protonated, with the oxime moieties bridging across the edges of the metal triangles. Both the identity of the metal ion and the length of the straps connecting the salicylaldoxime units have a major impact on the nuclearity and topology of the resultant cluster, with, perhaps counter-intuitively, the longer straps producing the "smallest" molecules.</p

    Transition metal complexes of quadridentate nitrogen ligands

    Get PDF

    Control of hyperglycaemia in paediatric intensive care (CHiP): study protocol.

    Get PDF
    BACKGROUND: There is increasing evidence that tight blood glucose (BG) control improves outcomes in critically ill adults. Children show similar hyperglycaemic responses to surgery or critical illness. However it is not known whether tight control will benefit children given maturational differences and different disease spectrum. METHODS/DESIGN: The study is an randomised open trial with two parallel groups to assess whether, for children undergoing intensive care in the UK aged <or= 16 years who are ventilated, have an arterial line in-situ and are receiving vasoactive support following injury, major surgery or in association with critical illness in whom it is anticipated such treatment will be required to continue for at least 12 hours, tight control will increase the numbers of days alive and free of mechanical ventilation at 30 days, and lead to improvement in a range of complications associated with intensive care treatment and be cost effective. Children in the tight control group will receive insulin by intravenous infusion titrated to maintain BG between 4 and 7.0 mmol/l. Children in the control group will be treated according to a standard current approach to BG management. Children will be followed up to determine vital status and healthcare resources usage between discharge and 12 months post-randomisation. Information regarding overall health status, global neurological outcome, attention and behavioural status will be sought from a subgroup with traumatic brain injury (TBI). A difference of 2 days in the number of ventilator-free days within the first 30 days post-randomisation is considered clinically important. Conservatively assuming a standard deviation of a week across both trial arms, a type I error of 1% (2-sided test), and allowing for non-compliance, a total sample size of 1000 patients would have 90% power to detect this difference. To detect effect differences between cardiac and non-cardiac patients, a target sample size of 1500 is required. An economic evaluation will assess whether the costs of achieving tight BG control are justified by subsequent reductions in hospitalisation costs. DISCUSSION: The relevance of tight glycaemic control in this population needs to be assessed formally before being accepted into standard practice

    3-Fluoro­salicylaldoxime at 6.5 GPa

    Get PDF
    3-Fluoro­salicylaldoxime, C7H6FNO2, unlike many salicylaldoxime derivatives, forms a crystal structure containing hydrogen-bonded chains rather than centrosymmetric hydrogen-bonded ring motifs. Each chain inter­acts with two chains above and two chains below via π–π stacking contacts [shortest centroid–centroid distance = 3.295 (1) Å]. This structure at 6.5 GPa represents the final point in a single-crystal compression study

    New discrete and polymeric supramolecular architectures derived from dinuclear Co(II), Ni(II) and Cu(II) complexes of aryl-linked bis-beta-diketonato ligands and nitrogen bases: synthetic, structural and high pressure studies

    Get PDF
    New examples of nitrogen base adducts of dinuclear Co(II), Ni(II) and Cu(II) complexes of the doubly deprotonated forms of 1,3-aryl linked bis-β-diketones of type [RC([double bond, length as m-dash]O)CH2C([double bond, length as m-dash]O)C6H4C([double bond, length as m-dash]O)CH2C([double bond, length as m-dash]O)R] (L1H2) incorporating the mono- and difunctional amine bases pyridine (Py), 4-ethylpyridine (EtPy), piperidine (pipi), 1,4-piperazine (pip), N-methylmorpholine (mmorph), 1,4-dimethylpiperazine (dmpip) and N,N,N′,N′-tetramethylethylenediamine (tmen) have been synthesised by reaction of the previously reported [Cu2(L1)2]·2.5THF (R = Me), [Cu2(L1)2(THF)2] (R = t-Bu), [Ni2(L1)2(Py)4] (R = t-Bu) and [Co2(L1)2(Py)4] (R = t-Bu) complexes with individual bases of the above type. Comparative X-ray structural studies involving all ten base adduct derivatives have been obtained and reveal a range of interesting discrete and polymeric molecular architectures. The respective products have the following stoichiometries: [Cu2(L1)2(Py)2]·Py (R = Me), [Cu2(L1)2(EtPy)2]·2EtPy (R = t-Bu), [Cu2(L1)2(pipi)2]·2pipi (R = t-Bu), [Cu2(L1)2(mmorph)2] (R = t-Bu), [Cu2(L1)2(tmen)2] (R = t-Bu) and {[Cu2(L1)2(pip)]·pip·2THF}n, [Co2(L1)2(tmen)2] (R = t-Bu), [Ni2(L1)2(Py)4]·dmpip (R = t-Bu), [Ni2(L1)2(pipi)4]·pipi (R = t-Bu) and [Ni2(L1)2(tmen)2] (R = t-Bu). The effect of pressure on the X-ray structure of [Cu2(L1)2(mmorph)2] has been investigated. An increase in pressure from ambient to 9.1 kbar resulted in modest changes to the unit cell parameters as well as a corresponding decrease of 6.7 percent in the unit cell volume. While a small ‘shearing’ motion occurs between adjacent molecular units throughout the lattice, no existing bonds are broken or new bonds formed

    Metal-binding motifs of alkyl and aryl phosphinates; versatile mono and polynucleating ligands

    Get PDF
    An analysis of 552 structures of metal complexes of alkyl and arylphosphinates in the Cambridge Crystallographic Database shows that the phosphinate ligating group is remarkably versatile and is able to adopt ten different binding motifs in both mono- and polynuclear complexes in which an individual phosphinate group can bind to up to five metal atoms. The majority of both homo- and heteroleptic complexes contain Msingle bondOsingle bondPR2double bond; length as m-dashOsingle bondM units in oligomeric and polymeric structures. In many heteroleptic complexes ligands containing hydrogen bond donors form strong bonding interactions with the phosphinate, generating pseudochelated structures. Similar pseudochelates, −Osingle bondPR2double bond; length as m-dashO⋯Hsingle bondOsingle bondPR2double bond; length as m-dashO, are formed when both a phosphinate and its parent phosphinic acid are coordinated to a single metal atom. Such structures feature also in the solution chemistry involved in metal extraction processes using phosphinate ligands. As might be expected, many of the binding motifs found in phosphinate complexes are similar to those in carboxylate complexes but there are fewer examples of phosphinates being used to form metal organic frameworks
    corecore