303 research outputs found

    Interactions between three biological control agents of water hyacinth, Eichhornia crassipes (Mart.) Solms (Pontederiaceae) in South Africa

    Get PDF
    Water hyacinth, Eichhomia crassipes (Mart.) Solms (Pontederiaceae) is a free-floating perennial weed that is regarded as the worst aquatic weed in the world because of its negative impacts on aquatic ecosystems. It is native to the Amazon Basin of South America, but since the late 1800s has spread throughout the world. The first record of the weed in South Africa was noted in 1908 on the Cape Flats and in KwaZulu-Natal, but it is now dispersed throughout the country. Mechanical and chemical control methods have been used against the weed, but biological control is considered the most cost-effective, sustainable and environmentally friendly intervention. Currently, nine biological control agents have been released against water hyacinth in South Africa, and Neochetina eichhorniae Warner (Coleoptera: Curculionidae) is used most widely to control it. However, in some sites, water hyacinth mats have still not been brought under control because of eutrophic waters and cool temperatures. It was therefore necessary to release new biological control agents to complement the impact of N. eichhorniae. Megamelus scutellaris Berg (Hemiptera: Delphacidae) was released in 2013, but little is known about how it interacts with other agents already present in South Africa. It is likely to compete with the established biological control agent, Eccritotarsus eichhorniae Henry (Heteroptera: Miridae), because they are both sap suckers. On the other hand, N. eichhorniae is the most widespread and thus the most important biological control agent for water hyacinth. The aim of this study, then, was to determine the interactions between the two sap-sucking agents in South Africa that presumably occupy similar niches on the plant, and the interaction between M. scutellerais and N. eichhorniae, the most widely distributed and abundant agent in South Africa. Three experiments were conducted at the Waainek Research Facility at Rhodes University, Grahamstown, Eastern Cape, South Africa. Plants were grown for two weeks and insect species were inoculated singly or in combination. Water hyacinth, plant growth parameters and insect parameters were measured every 14 days for a period of 12 weeks. The results of the study showed that feeding by either E. eichhorniae or M. scutellaris had no effect on the feeding of the other agent. Both agents reduced all the measured plant growth parameters equally, either singly or in combination (i.e. E. eichhorniae or M. scutellaris alone or together). The interaction between the two agents appears neutral and agents are likely to complement each other in the field. Prior feeding by E. eichhorniae or M. scutellaris on water hyacinth did not affect the subsequent feeding by either agent. Megamelus scutellaris prefers healthy fresh water hyacinth plants. In addition, planthoppers performed best in combination with the weevil, especially on plants with new weevil feeding scars. The results of the study showed that M. scutellaris is compatible with other biological control agents of water hyacinth that are already established in South Africa. Therefore, the introduction of M. scutellaris may enhance the biological control of water hyacinth in South Africa

    Interactions between three biological control agents of water hyacinth, Eichhornia crassipes (Mart.) Solms (Pontederiaceae) in South Africa

    Get PDF
    Water hyacinth, Eichhomia crassipes (Mart.) Solms (Pontederiaceae) is a free-floating perennial weed that is regarded as the worst aquatic weed in the world because of its negative impacts on aquatic ecosystems. It is native to the Amazon Basin of South America, but since the late 1800s has spread throughout the world. The first record of the weed in South Africa was noted in 1908 on the Cape Flats and in KwaZulu-Natal, but it is now dispersed throughout the country. Mechanical and chemical control methods have been used against the weed, but biological control is considered the most cost-effective, sustainable and environmentally friendly intervention. Currently, nine biological control agents have been released against water hyacinth in South Africa, and Neochetina eichhorniae Warner (Coleoptera: Curculionidae) is used most widely to control it. However, in some sites, water hyacinth mats have still not been brought under control because of eutrophic waters and cool temperatures. It was therefore necessary to release new biological control agents to complement the impact of N. eichhorniae. Megamelus scutellaris Berg (Hemiptera: Delphacidae) was released in 2013, but little is known about how it interacts with other agents already present in South Africa. It is likely to compete with the established biological control agent, Eccritotarsus eichhorniae Henry (Heteroptera: Miridae), because they are both sap suckers. On the other hand, N. eichhorniae is the most widespread and thus the most important biological control agent for water hyacinth. The aim of this study, then, was to determine the interactions between the two sap-sucking agents in South Africa that presumably occupy similar niches on the plant, and the interaction between M. scutellerais and N. eichhorniae, the most widely distributed and abundant agent in South Africa. Three experiments were conducted at the Waainek Research Facility at Rhodes University, Grahamstown, Eastern Cape, South Africa. Plants were grown for two weeks and insect species were inoculated singly or in combination. Water hyacinth, plant growth parameters and insect parameters were measured every 14 days for a period of 12 weeks. The results of the study showed that feeding by either E. eichhorniae or M. scutellaris had no effect on the feeding of the other agent. Both agents reduced all the measured plant growth parameters equally, either singly or in combination (i.e. E. eichhorniae or M. scutellaris alone or together). The interaction between the two agents appears neutral and agents are likely to complement each other in the field. Prior feeding by E. eichhorniae or M. scutellaris on water hyacinth did not affect the subsequent feeding by either agent. Megamelus scutellaris prefers healthy fresh water hyacinth plants. In addition, planthoppers performed best in combination with the weevil, especially on plants with new weevil feeding scars. The results of the study showed that M. scutellaris is compatible with other biological control agents of water hyacinth that are already established in South Africa. Therefore, the introduction of M. scutellaris may enhance the biological control of water hyacinth in South Africa

    Quantitative determination of modal content and morphological properties of coal sulphides by digital image analysis as a tool to check their flotation behaviour

    Full text link
    An efficient depression of coal sulphides in the flotation process means a healthier environment and may be essential for the sustainability of a coal operation. Nitric and ferric oxidative pre-treatment of coal pyrite have been tested to improve pyrite depression, and the results are compared with those from the process of raw, not pre-treated coal. The removal indexes point to nitric pre-treatment as the best, but depression is still low. The microscopic study of feed and products, coupled to Digital Image Analysis (DIA) in all the cases, provide important clues to understand the behaviour of pyrite, which can be related to quantitative parameters, such as the exposition ratio (ER), and to qualified interpretation of the textures. Pyrite shows in the first float an unexpected hydrophobic behaviour, which is due to its occurrence as framboids, or porous particles which may be intergrown with organic matter and behave as coal. In general, the flotation results can be predicted from the DIA-data, e.g. depression of liberated pyrite into the tailings, increased by oxidative pre-treatments by 300% (ferric) or by > 400% (nitric); or concentration of middlings with lower pyrite ER in the floats. DIA is an efficient tool to obtain some important quantitative informations which otherwise would be inaccessible (e.g. the morphological data on > 1,000,000 pyrite particles for this study), and its use should be enhanced to check ore processing

    INTEGRATING SOLAR POWER IN LARGE COMBINED-CYCLE POWER PLANTS

    Get PDF

    KRAS Ubiquitination at Lysine 104 Retains Exchange Factor Regulation by Dynamically Modulating the Conformation of the Interface

    Get PDF
    RAS proteins function as highly regulated molecular switches that control cellular growth. In addition to regulatory proteins, RAS undergoes a number of posttranslational modifications (PTMs) that regulate its activity. Lysine 104, a hot spot for multiple PTMs, is a highly conserved residue that forms key interactions that stabilize the RAS helix-2(H2)/helix-3(H3) interface. Mutation at 104 attenuates interaction with guanine nucleotide exchange factors (GEFs), whereas ubiquitination at lysine 104 retains GEF regulation. To elucidate how ubiquitination modulates RAS function, we generated monoubiquitinated KRAS at 104 using chemical biology approaches and conducted biochemical, NMR, and computational analyses. We find that ubiquitination promotes a new dynamic interaction network and alters RAS conformational dynamics to retain GEF function. These findings reveal a mechanism by which ubiquitination can regulate protein function

    Scc2 counteracts a Wapl-independent mechanism that releases cohesin from chromosomes during G1

    Get PDF
    Acknowledgements Maria Demidova conducted initial experiments that this study expanded on. We are grateful to Tomo Tanaka and Seiji Tanaka for supplying reagents. We thank all members of the Nasmyth group for valuable discussions, technical assistance and critical reading of the manuscript. This work was funded by the Wellcome Trust Senior Investigator Award, Grant Ref 107935/Z/15/Z and Cancer Research UK Programme Grant, Grant Ref 26747 to KN. BH is funded by (202062/Z/16/Z).Peer reviewedPublisher PD
    • 

    corecore