544 research outputs found
Functional safety networks and protocols in the industrial internet of things era
Functional safety networks are becoming of paramount importance in industrial systems, due to the progressive innovation introduced by the Industry 4.0 paradigm, characterized by high production flexibility, reliability and scalability. In this context, new and challenging applications have emerged such as hyperautomation, which refers to the combination of machine vision, robotics, communication, and learning, with the explicit involvement of humans. This requires the pervasive and ubiquitous connectivity encompassed by the Industrial Internet of Things, typically achieved via wireless systems. As an example, wireless communications are today fundamental to open up to new categories of autonomous devices that can actively collaborate with human personnel in the production process. This challenging scenario has important implications for safety. Indeed, a reliable coordination among sensors, actuators and computing systems is required to provide satisfactory levels of safety, especially in the case of innovative processes and technologies, such as mobile and collaborative robotics. Hence, it becomes imperative to ensure the correct transfer of safety-critical data via communication networks. In this paper, we address the challenges concerned with functional safety networks and protocols in Industrial Internet of Things ecosystems. We first introduce the design characteristics of functional safety networks and discuss the adoption of safety protocols over wireless networks. Then, we specifically address one of such protocols, namely Fail Safety over EtherCAT (FSoE), and provide the results of an extensive experimental session carried out exploiting a prototype system, implemented using commercial devices based on a WiFi network. Finally, the outcomes of the experiments are used as a basis for a discussion about future trends of functional safety in the Industrial Internet of Things era
SMYD3: An Oncogenic Driver Targeting Epigenetic Regulation and Signaling Pathways
SMYD3 is a member of the SMYD lysine methylase family and plays an important role in the methylation of various histone and non-histone targets. Aberrant SMYD3 expression contributes to carcinogenesis and SMYD3 upregulation was proposed as a prognostic marker in various solid cancers. Here we summarize SMYD3-mediated regulatory mechanisms, which are implicated in the pathophysiology of cancer, as drivers of distinct oncogenic pathways. We describe SMYD3-dependent mechanisms affecting cancer progression, highlighting SMYD3 interplay with proteins and RNAs involved in the regulation of cancer cell proliferation, migration and invasion. We also address the effectiveness and mechanisms of action for the currently available SMYD3 inhibitors. The findings analyzed herein demonstrate that a complex network of SMYD3-mediated cytoplasmic and nuclear interactions promote oncogenesis across different cancer types. These evidences depict SMYD3 as a modulator of the transcriptional response and of key signaling pathways, orchestrating multiple oncogenic inputs and ultimately, promoting transcriptional reprogramming and tumor transformation. Further insights into the oncogenic role of SMYD3 and its targeting of different synergistic oncogenic signals may be beneficial for effective cancer treatment
Dermoscopic changes in melanocytic naevi in children during digital follow-up.
(28.4%) after 4 years, in 5 of 37 lesions (13.5%) after 5 years, in 12 of 31 lesions (38.8%) after 6 years, and in 7 of 21 lesions (33.3%) after 7 years. Dermoscopic changes were detected in 25.3% of the lesions in patients aged 3–6 years, in 21% of the lesions in patients aged 7–12 years, and in 15.5% of the lesions in patients over 13 years. Main pattern changes consisted of transition from globular to globular-reticular (35 naevi), from globular to reticular (14 naevi) and from globular-reticular to reticular (24 naevi). These results are consistent with the view that melanocytic naevi generally undergo a characteristic transition from a globular pattern to a reticular pattern. Most of the changes are observed in the 3–6 years age group when hormonal and/or environmental factors are not thought to play a role in pattern alterations. Key words: melanocytic; naevi; dermoscopy; pattern; changes
EZETIMIBE PROTECTS THP-1 CELLS FROM ISCHEMIA-REPERFUSION INJURY REDUCING OXIDATIVE STRESS AND UP-REGULATING NRF2/ ARE GENE EXPRESSION
Background and Aims: We demonstrated that physical training, characterized by repeated ischemia-reperfusion (I-R) episodes (ischemic conditioning, IC), protects circulating cells from peripheral artery disease (PAD) patients against ischemic harms by reducing oxidative stress (OS) and by up-regulating nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway expression. Ezetimibe (Eze) has been shown to alleviate OS enhancing Nrf2 nuclear translocation in an AMPK/p62-dependent manner. In a cellular I-R and IC model, we aimed to investigate: 1) the effect of Eze on OS and Nrf2/ARE gene expression 2) whether Eze could have a synergistic effect on IC. Methods: THP-1 cells were treated with or without Eze (50mM) overnight, then subjected to 1 or 6 repetitive I-R cycles using EVOS FL Auto Imaging System. Reactive oxygen species (ROS) formation was evaluated with DCF in cytofluorimetry. Nrf2/ARE and p62 gene expression were evaluated by RT-PCR and western blotting. Results: When THP-1 cells were exposed to 1 I-R cycle, the preincubation with Eze significantly reduced ROS formation (p<0.01) and up-regulated Nrf2/ARE pathway expression and p62 phosphorylation (p<0.001). Multiple I-R cycles, acting as IC, significantly reduced ROS formation and upregulated Nrf2/ARE gene expression (p<0.001); in these conditions, Eze preincubation was able not only to almost abolish ROS formation (p<0.01) but also further up-regulate Nrf2/ARE expression. Conclusions: In our I-R model, Eze not only restores I-R-induced oxidative damages through Nrf2/ARE signaling up-regulation but also has a synergistic effect on IC. This new \u201cpleiotropic\u201d effect, if confirmed in vivo, may strengthen the use of Eze in PAD patien
“In medio stat virtus”: Insights into hybrid E/M phenotype attitudes
Epithelial-mesenchymal plasticity (EMP) refers to the ability of cells to dynamically interconvert between epithelial (E) and mesenchymal (M) phenotypes, thus generating an array of hybrid E/M intermediates with mixed E and M features. Recent findings have demonstrated how these hybrid E/M rather than fully M cells play key roles in most of physiological and pathological processes involving EMT. To this regard, the onset of hybrid E/M state coincides with the highest stemness gene expression and is involved in differentiation of either normal and cancer stem cells. Moreover, hybrid E/M cells are responsible for wound healing and create a favorable immunosuppressive environment for tissue regeneration. Nevertheless, hybrid state is responsible of metastatic process and of the increasing of survival, apoptosis and therapy resistance in cancer cells. The present review aims to describe the main features and the emerging concepts regulating EMP and the formation of E/M hybrid intermediates by describing differences and similarities between cancer and normal hybrid stem cells. In particular, the comprehension of hybrid E/M cells biology will surely advance our understanding of their features and how they could be exploited to improve tissue regeneration and repair
Consensus on the use of the fixed combination calcipotriol/betamethasone dipropionate in the treatment of plaque psoriasis.
Calcipotriol, a vitamin D analogue, and betamethasone dipropionate, a high potency corticosteroid, are complementary agents for the topical treatment of psoriasis vulgaris. Robust evidence on the efficacy and safety of their fixed combination has been provided by randomized, double-blind, controlled clinical trials involving more than 7000 patients with the ointment formulation in psoriasis of the body and more than 4000 patients with the gel formulation in scalp psoriasis. These trials have shown that the fixed combination ointment is more effective and better tolerated, not only than placebo, but also than calcipotriol and tacalcitol monotherapies. In addition, it has proved, in most instances, to be more effective than betamethasone and at least as well tolerated. The same applies to the gel for scalp and body psoriasis. Safety studies have excluded that repeated courses of treatment with the fixed combination for up to one year produce systemic effects. Studies have also shown that the fixed combination treatment improves quality of life to a significantly greater extent than calcipotriol, with the once daily regimen most appreciated by patients, in both active disease and recurrency. Because of the extensive evidence, American and European guidelines recommend the calcipotriol/betamethasone dipropionate fixed combination a
An IoT Measurement System Based on LoRaWAN for Additive Manufacturing
The Industrial Internet of Things (IIoT) paradigm represents a significant leap forward for sensor networks, potentially enabling wide-area and innovative measurement systems. In this scenario, smart sensors might be equipped with novel low-power and long range communication technologies to realize a so-called low-power wide-area network (LPWAN). One of the most popular representative cases is the LoRaWAN (Long Range WAN) network, where nodes are based on the widespread LoRa physical layer, generally optimized to minimize energy consumption, while guaranteeing long-range coverage and low-cost deployment. Additive manufacturing is a further pillar of the IIoT paradigm, and advanced measurement capabilities may be required to monitor significant parameters during the production of artifacts, as well as to evaluate environmental indicators in the deployment site. To this end, this study addresses some specific LoRa-based smart sensors embedded within artifacts during the early stage of the production phase, as well as their behavior once they have been deployed in the final location. An experimental evaluation was carried out considering two different LoRa end-nodes, namely, the Microchip RN2483 LoRa Mote and the Tinovi PM-IO-5-SM LoRaWAN IO Module. The final goal of this research was to assess the effectiveness of the LoRa-based sensor network design, both in terms of suitability for the aforementioned application and, specifically, in terms of energy consumption and long-range operation capabilities. Energy optimization, battery life prediction, and connectivity range evaluation are key aspects in this application context, since, once the sensors are embedded into artifacts, they will no longer be accessible
Nanotechnology-Assisted Cell Tracking
The usefulness of nanoparticles (NPs) in the diagnostic and/or therapeutic sector is derived from their aptitude for navigating intra-and extracellular barriers successfully and to be spatiotemporally targeted. In this context, the optimization of NP delivery platforms is technologically related to the exploitation of the mechanisms involved in the NP–cell interaction. This review provides a detailed overview of the available technologies focusing on cell–NP interaction/detection by describing their applications in the fields of cancer and regenerative medicine. Specifically, a literature survey has been performed to analyze the key nanocarrier-impacting elements, such as NP typology and functionalization, the ability to tune cell interaction mechanisms under in vitro and in vivo conditions by framing, and at the same time, the imaging devices supporting NP delivery assessment, and consideration of their specificity and sensitivity. Although the large amount of literature information on the designs and applications of cell membrane-coated NPs has reached the extent at which it could be considered a mature branch of nanomedicine ready to be translated to the clinic, the technology applied to the biomimetic functionalization strategy of the design of NPs for directing cell labelling and intracellular retention appears less advanced. These approaches, if properly scaled up, will present diverse biomedical applications and make a positive impact on human health
- …