1,391 research outputs found
On single-copy entanglement
The largest eigenvalue of the reduced density matrix for quantum chains is
shown to have a simple physical interpretation and power-law behaviour in
critical systems. This is verified numerically for XXZ spin chains.Comment: 4 pages, 2 figures, note added, typo correcte
Critical entanglement of XXZ Heisenberg chains with defects
We study the entanglement properties of anisotropic open spin one-half
Heisenberg chains with a modified central bond. The entanglement entropy
between the two half-chains is calculated with the density-matrix
renormalization method (DMRG).We find a logarithmic behaviour with an effective
central charge c' varying with the length of the system. It flows to one in the
ferromagnetic region and to zero in the antiferromagnetic region of the model.
In the XX case it has a non-universal limit and we recover previous results.Comment: 8 pages, 15 figure
On the reduced density matrix for a chain of free electrons
The properties of the reduced density matrix describing an interval of N
sites in an infinite chain of free electrons are investigated. A commuting
operator is found for arbitrary filling and also for open chains. For a half
filled periodic chain it is used to determine the eigenfunctions for the
dominant eigenvalues analytically in the continuum limit. Relations to the
critical six-vertex model are discussed.Comment: 8 pages, small changes, Equ.(24) corrected, final versio
Fluctuations in subsystems of the zero temperature XX chain: Emergence of an effective temperature
The zero-temperature XX chain is studied with emphasis on the properties of a
block of spins inside the chain. We investigate the quantum fluctuations
resulting from the entanglement of the block with the rest of the chain using
analytical as well as numerical (density matrix renormalization group) methods.
It is found that the rest of the chain acts as a thermal environment and an
effective temperature can be introduced to describe the fluctuations. We show
that the effective temperature description is robust in the sense that several
independent definitions (through fluctuation dissipation theorem, comparing
with a finite temperature system) yield the same functional form in the limit
of large block size (). The effective temperature can also be shown
to satisfy the basic requirements on how it changes when two bodies of equal or
unequal temperatures are brought into contact.Comment: 19 pages, 7 figure
On entanglement evolution across defects in critical chains
We consider a local quench where two free-fermion half-chains are coupled via
a defect. We show that the logarithmic increase of the entanglement entropy is
governed by the same effective central charge which appears in the ground-state
properties and which is known exactly. For unequal initial filling of the
half-chains, we determine the linear increase of the entanglement entropy.Comment: 11 pages, 5 figures, minor changes, reference adde
Temperature driven crossover phenomena in the correlation lengths of the one-dimensional t-J model
We describe a modified transfer matrix renormalization group (TMRG) algorithm
and apply it to calculate thermodynamic properties of the one-dimensional t-J
model. At the supersymmetric point we compare with Bethe ansatz results and
make direct connection to conformal field theory (CFT). In particular we study
the crossover from the non-universal high T lattice into the quantum critical
regime by calculating various correlation lengths and static correlation
functions. Finally, the existence of a spin-gap phase is confirmed.Comment: 7 pages, 7 figure
Evolution of entanglement after a local quench
We study free electrons on an infinite half-filled chain, starting in the
ground state with a bond defect. We find a logarithmic increase of the
entanglement entropy after the defect is removed, followed by a slow relaxation
towards the value of the homogeneous chain. The coefficients depend
continuously on the defect strength.Comment: 14 pages, 9 figures, final versio
On the relation between entanglement and subsystem Hamiltonians
We show that a proportionality between the entanglement Hamiltonian and the
Hamiltonian of a subsystem exists near the limit of maximal entanglement under
certain conditions. Away from that limit, solvable models show that the
coupling range differs in both quantities and allow to investigate the effect.Comment: 7 pages, 2 figures version2: minor changes, typos correcte
Area law and vacuum reordering in harmonic networks
We review a number of ideas related to area law scaling of the geometric
entropy from the point of view of condensed matter, quantum field theory and
quantum information. An explicit computation in arbitrary dimensions of the
geometric entropy of the ground state of a discretized scalar free field theory
shows the expected area law result. In this case, area law scaling is a
manifestation of a deeper reordering of the vacuum produced by majorization
relations. Furthermore, the explicit control on all the eigenvalues of the
reduced density matrix allows for a verification of entropy loss along the
renormalization group trajectory driven by the mass term. A further result of
our computation shows that single-copy entanglement also obeys area law
scaling, majorization relations and decreases along renormalization group
flows.Comment: 15 pages, 6 figures; typos correcte
On reduced density matrices for disjoint subsystems
We show that spin and fermion representations for solvable quantum chains
lead in general to different reduced density matrices if the subsystem is not
singly connected. We study the effect for two sites in XX and XY chains as well
as for sublattices in XX and transverse Ising chains.Comment: 10 pages, 4 figure
- …