1,610 research outputs found
Fosfatos naturais reativos: resultados obtidos no sul do Brasil.
bitstream/item/84108/1/CNPT-BOL.-PESQ.-4-00.pd
Stationary Entangled Radiation from Micromechanical Motion
Mechanical systems facilitate the development of a new generation of hybrid
quantum technology comprising electrical, optical, atomic and acoustic degrees
of freedom. Entanglement is the essential resource that defines this new
paradigm of quantum enabled devices. Continuous variable (CV) entangled fields,
known as Einstein-Podolsky-Rosen (EPR) states, are spatially separated two-mode
squeezed states that can be used to implement quantum teleportation and quantum
communication. In the optical domain, EPR states are typically generated using
nondegenerate optical amplifiers and at microwave frequencies Josephson
circuits can serve as a nonlinear medium. It is an outstanding goal to
deterministically generate and distribute entangled states with a mechanical
oscillator. Here we observe stationary emission of path-entangled microwave
radiation from a parametrically driven 30 micrometer long silicon nanostring
oscillator, squeezing the joint field operators of two thermal modes by
3.40(37) dB below the vacuum level. This mechanical system correlates up to 50
photons/s/Hz giving rise to a quantum discord that is robust with respect to
microwave noise. Such generalized quantum correlations of separable states are
important for quantum enhanced detection and provide direct evidence for the
non-classical nature of the mechanical oscillator without directly measuring
its state. This noninvasive measurement scheme allows to infer information
about otherwise inaccessible objects with potential implications in sensing,
open system dynamics and fundamental tests of quantum gravity. In the near
future, similar on-chip devices can be used to entangle subsystems on vastly
different energy scales such as microwave and optical photons.Comment: 13 pages, 5 figure
Spatial Patterns Emerging from a Stochastic Process Near Criticality
There is mounting empirical evidence that many communities of living organisms display key features which closely resemble those of physical systems at criticality. We here introduce a minimal model framework for the dynamics of a community of individuals which undergoes local birth-death, immigration, and local jumps on a regular lattice. We study its properties when the system is close to its critical point. Even if this model violates detailed balance, within a physically relevant regime dominated by fluctuations, it is possible to calculate analytically the probability density function of the number of individuals living in a given volume, which captures the close-to-critical behavior of the community across spatial scales. We find that the resulting distribution satisfies an equation where spatial effects are encoded in appropriate functions of space, which we calculate explicitly. The validity of the analytical formulae is confirmed by simulations in the expected regimes. We finally discuss how this model in the critical-like regime is in agreement with several biodiversity patterns observed in tropical rain forests
Mechanical On-Chip Microwave Circulator
Nonreciprocal circuit elements form an integral part of modern measurement
and communication systems. Mathematically they require breaking of
time-reversal symmetry, typically achieved using magnetic materials and more
recently using the quantum Hall effect, parametric permittivity modulation or
Josephson nonlinearities. Here, we demonstrate an on-chip magnetic-free
circulator based on reservoir engineered optomechanical interactions.
Directional circulation is achieved with controlled phase-sensitive
interference of six distinct electro-mechanical signal conversion paths. The
presented circulator is compact, its silicon-on-insulator platform is
compatible with both superconducting qubits and silicon photonics, and its
noise performance is close to the quantum limit. With a high dynamic range, a
tunable bandwidth of up to 30 MHz and an in-situ reconfigurability as beam
splitter or wavelength converter, it could pave the way for superconducting
qubit processors with integrated and multiplexed on-chip signal processing and
readout.Comment: References have been update
Some remarks on the spectral functions of the Abelian Higgs Model
We consider the unitary Abelian Higgs model and investigate its spectral
functions at one-loop order. This analysis allows to disentangle what is
physical and what is not at the level of the elementary particle propagators,
in conjunction with the Nielsen identities. We highlight the role of the
tadpole graphs and the gauge choices to get sensible results. We also introduce
an Abelian Curci-Ferrari action coupled to a scalar field to model a massive
photon which, like the non-Abelian Curci-Ferarri model, is left invariant by a
modified non-nilpotent BRST symmetry. We clearly illustrate its non-unitary
nature directly from the spectral function viewpoint. This provides a
functional analogue of the Ojima observation in the canonical formalism: there
are ghost states with nonzero norm in the BRST-invariant states of the
Curci-Ferrari model.Comment: 32 pages, 12 figure
Novel Collective Effects in Integrated Photonics
Superradiance, the enhanced collective emission of energy from a coherent
ensemble of quantum systems, has been typically studied in atomic ensembles. In
this work we study theoretically the enhanced emission of energy from coherent
ensembles of harmonic oscillators. We show that it should be possible to
observe harmonic oscillator superradiance for the first time in waveguide
arrays in integrated photonics. Furthermore, we describe how pairwise
correlations within the ensemble can be measured with this architecture. These
pairwise correlations are an integral part of the phenomenon of superradiance
and have never been observed in experiments to date.Comment: 7 pages, 3 figure
Experiencias compartidas sobre detección de micotoxinas de Fusarium a las harinas de soja, trigo y otros cultivos
Experiencias compartidas sobre detección de micotoxinas de Fusarium a las harinas
de soja, trigo y otros cultivosFil: Peruzzo, Alejandra. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentin
- …